959 resultados para Intracellular Signaling Peptides and Proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes three distinct estrogen receptor (ER) subtypes: ERα, ERβ, and a unique type, ERγ, cloned from a teleost fish, the Atlantic croaker Micropogonias undulatus; the first identification of a third type of classical ER in vertebrate species. Phylogenetic analysis shows that ERγ arose through gene duplication from ERβ early in the teleost lineage and indicates that ERγ is present in other teleosts, although it has not been recognized as such. The Atlantic croaker ERγ shows amino acid differences in regions important for ligand binding and receptor activation that are conserved in all other ERγs. The three ER subtypes are genetically distinct and have different distribution patterns in Atlantic croaker tissues. In addition, ERβ and ERγ fusion proteins can each bind estradiol-17β with high affinity. The presence of three functional ERs in one species expands the role of ER multiplicity in estrogen signaling systems and provides a unique opportunity to investigate the dynamics and mechanisms of ER evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cAMP-responsive element binding protein (CREB), a key regulator of gene expression, is activated by phosphorylation on Ser-133. Several different protein kinases possess the capability of driving this phosphorylation, making it a point of potential convergence for multiple intracellular signaling cascades. Previous work in neurons has indicated that physiologic synaptic stimulation recruits a fast calmodulin kinase IV (CaMKIV)-dependent pathway that dominates early signaling to CREB. Here we show in hippocampal neurons that the fast, CaMK-dependent pathway can be followed by a slower pathway that depends on Ras/mitogen-activated protein kinase (MAPK), along with CaMK. This pathway was blocked by dominant-negative Ras and was specifically recruited by depolarizations that produced strong intracellular Ca2+ transients. When both pathways were recruited, phosphorylated CREB (pCREB) formation was overwhelmingly dominated by the CaMK pathway between 0 and 10 min, and by the MAPK pathway at 60 min, whereas the two pathways acted in concert at 30 min. The Ca2+ signals that produced only rapid CaMK signaling to pCREB or both rapid CaMK and slow MAPK signaling deviated significantly for only ≈1 min, yet their differential impact on pCREB extended over a much longer period, between 20 and 60 min and beyond, which is of likely significance for gene expression. The CaMK-dependent MAPK pathway may inform the nucleus about stimulus amplitude. In contrast, the CaMKIV pathway may be well suited to conveying information on the precise timing of localized synaptic stimuli, befitting its greater speed and sensitivity, whereas the previously described calcineurin pathway may carry information about stimulus duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transporter associated with antigen processing (TAP) is essential for intracellular transport of protein fragments into the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. On the cell surface, these peptide–MHC complexes are monitored by cytotoxic T lymphocytes. To study the ATP hydrolysis of TAP, we developed an enrichment and reconstitution procedure, by which we fully restored TAP function in proteoliposomes. A TAP-specific ATPase activity was identified that could be stimulated by peptides and blocked by the herpes simplex virus protein ICP47. Strikingly, the peptide-binding motif of TAP directly correlates with the stimulation of the ATPase activity, demonstrating that the initial peptide-binding step is responsible for TAP selectivity. ATP hydrolysis follows Michaelis–Menten kinetics with a maximal velocity Vmax of 2 μmol/min per mg TAP, corresponding to a turnover number of approximately 5 ATP per second. This turnover rate is sufficient to account for the role of TAP in peptide loading of MHC molecules and the overall process of antigen presentation. Interestingly, sterically restricted peptides that bind but are not transported by TAP do not stimulate ATPase activity. These results point to coordinated dialogue between the peptide-binding site, the nucleotide-binding domain, and the translocation site via conformational changes within the TAP complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intracellular degradation of many proteins is mediated in an ATP-dependent manner by large assemblies comprising a chaperone ring complex associated coaxially with a proteolytic cylinder, e.g., ClpAP, ClpXP, and HslUV in prokaryotes, and the 26S proteasome in eukaryotes. Recent studies of the chaperone ClpA indicate that it mediates ATP-dependent unfolding of substrate proteins and directs their ATP-dependent translocation into the ClpP protease. Because the axial passageway into the proteolytic chamber is narrow, it seems likely that unfolded substrate proteins are threaded from the chaperone into the protease, suggesting that translocation could be directional. We have investigated directionality in the ClpA/ClpP-mediated reaction by using two substrate proteins bearing the COOH-terminal ssrA recognition element, each labeled near the NH2 or COOH terminus with fluorescent probes. Time-dependent changes in both fluorescence anisotropy and fluorescence resonance energy transfer between donor fluorophores in the ClpP cavity and the substrate probes as acceptors were measured to monitor translocation of the substrates from ClpA into ClpP. We observed for both substrates that energy transfer occurs 2–4 s sooner with the COOH-terminally labeled molecules than with the NH2-terminally labeled ones, indicating that translocation is indeed directional, with the COOH terminus of the substrate protein entering ClpP first.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholinergic transmission at muscarinic acetylcholine receptors (mAChR) has been implicated in higher brain functions such as learning and memory, and loss of synapses may contribute to the symptoms of Alzheimer disease. A heterogeneous family of five genetically distinct mAChR subtypes differentially modulate a variety of intracellular signaling systems as well as the processing of key molecules involved in the pathology of the disease. Although many muscarinic effects have been identified in memory circuits, including a diversity of pre- and post-synaptic actions in hippocampus, the identities of the molecular subtypes responsible for any given function remain elusive. All five mAChR genes are expressed in hippocampus, and subtype-specific antibodies have enabled identification, quantification, and localization of the encoded proteins. The m1, m2, and m4 mAChR proteins are most abundant in forebrain regions and they have distinct cellular and subcellular localizations suggestive of various pre- and postsynaptic functions in cholinergic circuits. The subtypes are also differentially altered in postmortem brain samples from Alzheimer disease cases. Further understanding of the molecular pharmacology of failing synapses in Alzheimer disease, together with the development of new subtype-selective drugs, may provide more specific and effective treatments for the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How does a protease act like a hormone to regulate cellular functions? The coagulation protease thrombin (EC 3.4.21.5) activates platelets and regulates the behavior of other cells by means of G protein-coupled protease-activated receptors (PARs). PAR1 is activated when thrombin binds to and cleaves its amino-terminal exodomain to unmask a new receptor amino terminus. This new amino terminus then serves as a tethered peptide ligand, binding intramolecularly to the body of the receptor to effect transmembrane signaling. The irreversibility of PAR1’s proteolytic activation mechanism stands in contrast to the reversible ligand binding that activates classical G protein-coupled receptors and compels special mechanisms for desensitization and resensitization. In endothelial cells and fibroblasts, activated PAR1 rapidly internalizes and then sorts to lysosomes rather than recycling to the plasma membrane as do classical G protein-coupled receptors. This trafficking behavior is critical for termination of thrombin signaling. An intracellular pool of thrombin receptors refreshes the cell surface with naïve receptors, thereby maintaining thrombin responsiveness. Thus cells have evolved a trafficking solution to the signaling problem presented by PARs. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin. PAR2 is activated by trypsin and by trypsin-like proteases but not by thrombin. Recent studies with knockout mice, receptor-activating peptides, and blocking antibodies are beginning to define the role of these receptors in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein synthesis occurs in neuronal dendrites, often near synapses. Polyribosomal aggregates often appear in dendritic spines, particularly during development. Polyribosomal aggregates in spines increase during experience-dependent synaptogenesis, e.g., in rats in a complex environment. Some protein synthesis appears to be regulated directly by synaptic activity. We use “synaptoneurosomes,” a preparation highly enriched in pinched-off, resealed presynaptic processes attached to resealed postsynaptic processes that retain normal functions of neurotransmitter release, receptor activation, and various postsynaptic responses including signaling pathways and protein synthesis. We have found that, when synaptoneurosomes are stimulated with glutamate or group I metabotropic glutamate receptor agonists such as dihydroxyphenylglycine, mRNA is rapidly taken up into polyribosomal aggregates, and labeled methionine is incorporated into protein. One of the proteins synthesized is FMRP, the protein that is reduced or absent in fragile X mental retardation syndrome. FMRP has three RNA-binding domains and reportedly binds to a significant number of mRNAs. We have found that dihydroxyphenylglycine-activated protein synthesis in synaptoneurosomes is dramatically reduced in a knockout mouse model of fragile X syndrome, which cannot produce full-length FMRP, suggesting that FMRP is involved in or required for this process. Studies of autopsy samples from patients with fragile X syndrome have indicated that dendritic spines may fail to assume a normal mature size and shape and that there are more spines per unit dendrite length in the patient samples. Similar findings on spine size and shape have come from studies of the knockout mouse. Study of the development of the somatosensory cortical region containing the barrel-like cell arrangements that process whisker information suggests that normal dendritic regression is impaired in the knockout mouse. This finding suggests that FMRP may be required for the normal processes of maturation and elimination to occur in cerebral cortical development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor tyrosine kinase RET functions during the development of the kidney and the enteric nervous system, yet no ligand has been identified to date. This report demonstrates that the glial cell line-derived neurotrophic factor (GDNF) activates RET, as measured by tyrosine phosphorylation of the intracellular catalytic domain. GDNF also binds RET with a dissociation constant of 8 nM, and 125I-labeled GDNF can be coimmunoprecipitated with anti-RET antibodies. In addition, exogenous GDNF stimulates both branching and proliferation of embryonic kidneys in organ culture, whereas neutralizing antibodies against GDNF inhibit branching morphogenesis. These data indicate that RET and GDNF are components of a common signaling pathway and point to a role for GDNF in kidney development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligand to a G protein-coupled receptor sequentially related to the opioid receptors. We have cloned both the human and rat cDNAs encoding the OFQ precursor proteins, to investigate whether the sequence relationships existing between the opioid and OFQ systems are also found at the polypeptide precursor level, in particular whether the OFQ precursor would encode several bioactive peptides as do the opioid precursors, and to study the regional distribution of OFQ sites of synthesis. The entire precursor protein displays structural homology to the opioid peptide precursors, especially preprodynorphin and preproenkephalin. The predicted amino acid sequence of the OFQ precursor contains a putative signal peptide and one copy of the OFQ sequence flanked by pairs of basic amino acid residues. Carboxyl-terminal to the OFQ sequence, the human and rat precursors contain a stretch of 28 amino acids that is 100% conserved and thus may encode novel bioactive peptides. Two peptides derived from this stretch were synthesized but were found to be unable to activate the OFQ receptor, suggesting that if they are produced in vivo, these peptides would likely recognize receptors different from the OFQ receptor. To begin analyzing the sites of OFQ mRNA synthesis, Northern analysis of human and rat tissues were carried out and showed that the OFQ precursor mRNA is mainly expressed in the brain. In situ hybridization of rat brain slices demonstrated a regional distribution pattern of the OFQ precursor mRNA, which is distinct from that of the opioid peptide precursors. These data confirm that the OFQ system differs from the opioid system at the molecular level, although the OFQ and opioid precursors may have arisen from a common ancestral gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many genes involved in cell division and DNA replication and their protein products have been identified in bacteria; however, little is known about the cell cycle regulation of the intracellular concentration of these proteins. It has been shown that the level of the tubulin-like GTPase FtsZ is critical for the initiation of cell division in bacteria. We show that the concentration of FtsZ varies dramatically during the cell cycle of Caulobacter crescentus. Caulobacter produce two different cell types at each cell division: (i) a sessile stalked cell that can initiate DNA replication immediately after cell division and (ii) a motile swarmer cell in which DNA replication is blocked. After cell division, only the stalked cell contains FtsZ. FtsZ is synthesized slightly before the swarmer cells differentiate into stalked cells and the intracellular concentration of FtsZ is maximal at the beginning of cell division. Late in the cell cycle, after the completion of chromosome replication, the level of FtsZ decreases dramatically. This decrease is probably mostly due to the degradation of FtsZ in the swarmer compartment of the predivisional cell. Thus, the variation of FtsZ concentration parallels the pattern of DNA synthesis. Constitutive expression of FtsZ leads to defects in stalk biosynthesis suggesting a role for FtsZ in this developmental process in addition to its role in cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-trans-retinoic acid (at-RA) induces cell differentiation in a wide variety of cell types, including F9 embryonic teratocarcinoma cells, and can influence axial pattern formation during embryonic development. We now identify a novel retinoid synthetic pathway in differentiating F9 cells that results in the intracellular production of 4-oxoretinol (4-oxo-ROL) from retinol (vitamin A). Approximately 10-15% of the total retinol in the culture is metabolized to 4-hydroxyretinol and 4-oxo-ROL by the at-RA-treated, differentiating F9 cells over an 18-hr period, but no detectable metabolism of all-trans-retinol to at-RA or 9-cis-retinoic acid is observed in these cells. Remarkably, we show that 4-oxo-ROL can bind and activate transcription of the retinoic acid receptors whereas all-trans-retinol shows neither activity. Low doses of 4-oxo-ROL (e.g., 10(-9) or 10(-10 M) can activate the retinoic acid receptors even though, unlike at-RA, 4-oxo-ROL does not contain an acid moiety at the carbon 15 position. 4-oxo-ROL does not bind or transcriptionally activate the retinoid X receptors. Treatment of F9 cells with 4-oxo-ROL induces differentiation without conversion to the acid and 4-oxo-ROL is active in causing axial truncation when administered to Xenopus embryos at the blastula stage. Thus, 4-oxo-ROL is a natural, biologically active retinoid that is present in differentiated F9 cells. Our data suggest that 4-oxo-ROL may be a novel signaling molecule and regulator of cell differentiation.