919 resultados para Interleukin-2 Gene
Resumo:
Aims/hypothesis Diabetic retinopathy is a serious complication of diabetes mellitus and can lead to blindness. A genetic component, in addition to traditional risk factors, has been well described although strong genetic factors have not yet been identified. Here, we aimed to identify novel genetic risk factors for sight-threatening diabetic retinopathy using a genome-wide association study. Methods Retinopathy was assessed in white Australians with type 2 diabetes mellitus. Genome-wide association analysis was conducted for comparison of cases of sight-threatening diabetic retinopathy (n = 336) with diabetic controls with no retinopathy (n = 508). Top ranking single nucleotide polymorphisms were typed in a type 2 diabetes replication cohort, a type 1 diabetes cohort and an Indian type 2 cohort. A mouse model of proliferative retinopathy was used to assess differential expression of the nearby candidate gene GRB2 by immunohistochemistry and quantitative western blot. Results The top ranked variant was rs3805931 with p = 2.66 × 10−7, but no association was found in the replication cohort. Only rs9896052 (p = 6.55 × 10−5) was associated with sight-threatening diabetic retinopathy in both the type 2 (p = 0.035) and the type 1 (p = 0.041) replication cohorts, as well as in the Indian cohort (p = 0.016). The study-wide meta-analysis reached genome-wide significance (p = 4.15 × 10−8). The GRB2 gene is located downstream of this variant and a mouse model of retinopathy showed increased GRB2 expression in the retina. Conclusions/interpretation Genetic variation near GRB2 on chromosome 17q25.1 is associated with sight-threatening diabetic retinopathy. Several genes in this region are promising candidates and in particular GRB2 is upregulated during retinal stress and neovascularisation.
Resumo:
Ankylosing spondylitis (AS) is a chronic inflammatory arthritis that affects the spine and sacroiliac joints. It causes significant disability and is associated with a number of other features including peripheral arthritis, anterior uveitis, psoriasis and inflammatory bowel disease (IBD). Significant progress has been made in the genetics of AS have in the last five years, leading to new treatments in trial, and major leaps in understanding of the aetiopathogenesis of the disease.
Resumo:
Investigation of 31 of Roma patients with congenital lactic acidosis (CLA) from Bulgaria identified homozygosity for the R446* mutation in the PDHX gene as the most common cause of the disorder in this ethnic group. It accounted for around 60% of patients in the study and over 25% of all CLA cases referred to the National Genetic Laboratory in Bulgaria. The detection of a homozygous patient from Hungary and carriers among population controls from Romania and Slovakia suggests a wide spread of the mutation in the European Roma population. The clinical phenotype of the twenty R446* homozygotes was relatively homogeneous, with lactic acidosis crisis in the first days or months of life as the most common initial presentation (15/20 patients) and delayed psychomotor development and/or seizures in infancy as the leading manifestations in a smaller group (5/20 patients). The subsequent clinical picture was dominated by impaired physical growth and a very consistent pattern of static cerebral palsy-like encephalopathy with spasticity and severe to profound mental retardation seen in over 80% of cases. Most patients had a positive family history. We propose testing for the R446* mutation in PDHX as a rapid first screening in Roma infants with metabolic acidosis. It will facilitate and accelerate diagnosis in a large proportion of cases, allow early rehabilitation to alleviate the chronic clinical course, and prevent further affected births in high-risk families.
Resumo:
Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap. © 2013 Macmillan Publishers Limited. All rights reserved.
Resumo:
Ankylosing spondylitis is a model immunogenetic disease with major common and rare genetic risk factors, likely environmental contributors to its pathogenesis and, to date, no treatment that has been shown to induce disease remission in long-term studies. The discovery of the association of HLA-B27 with the disease in the early 1970s triggered extensive efforts to elucidate the mechanism of this association. However, the precise role of HLA-B27 in ankylosing spondylitis pathogenesis remains unclear. In recent years, rapid progress made in the discovery of non-MHC genes involved in susceptibility to ankylosing spondylitis has combined with increasing ability to investigate the immune system to make rapid progress in unraveling the etiopathogenesis of the condition. © 2013 Future Medicine Ltd.
Resumo:
Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.
Resumo:
Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 P×-9, odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin. © 2011 Nature America, Inc. All rights reserved.
Resumo:
To identify susceptibility loci for ankylosing spondylitis, we undertook a genome-wide association study in 2,053 unrelated ankylosing spondylitis cases among people of European descent and 5,140 ethnically matched controls, with replication in an independent cohort of 898 ankylosing spondylitis cases and 1,518 controls. Cases were genotyped with Illumina HumHap370 genotyping chips. In addition to strong association with the major histocompatibility complex (MHC; P 10 800), we found association with SNPs in two gene deserts at 2p15 (rs10865331; combined P = 1.9 × 10 19) and 21q22 (rs2242944; P = 8.3 × 10 20), as well as in the genes ANTXR2 (rs4333130; P = 9.3 × 10 8) and IL1R2 (rs2310173; P = 4.8 × 10 7). We also replicated previously reported associations at IL23R (rs11209026; P = 9.1 × 10 14) and ERAP1 (rs27434; P = 5.3 × 10 12). This study reports four genetic loci associated with ankylosing spondylitis risk and identifies a major role for the interleukin (IL)-23 and IL-1 cytokine pathways in disease susceptibility. © 2010 Nature America, Inc. All rights reserved.
Resumo:
Ankylosing spondylitis (AS) is polygenic with contributions from the immunologically relevant genes HLA-B27, ERAP1 and IL23R. A recent genome-wide association screen (GWAS) identified associations (P0.005) with the non-synonymous single-nucleotide polymorphisms (nsSNPs), rs4077515 and rs3812571, in caspase recruitment domain-containing protein 9 (CARD9) and small nuclear RNA-activating complex polypeptide 4 (SNAPC4) on chromosome 9q that had previously been linked to AS. We replicated these associations in a study of 730 AS patients compared with 2879 historic disease controls (rs4077515 P0.0004, odds ratio (OR)1.2, 95% confidence interval (CI)1.1-1.4; rs3812571 P0.0003, OR1.2, 95% CI1.1-1.4). Meta-analysis revealed strong associations of both SNPs with AS, rs4077515 P0.000005, OR1.2, 95% CI1.1-1.3 and rs3812571 P0.000006, OR1.2, 95% CI1.1-1.3. We then typed 1604 AS cases and 1020 controls for 13 tagging SNPs; 6 showed at least nominal association, 5 of which were in CARD9. We imputed genotypes for 13 additional SNPs but none was more strongly associated with AS than the tagging SNPs. Finally, interrogation of an mRNA expression database revealed that the SNPs most strongly associated with AS (or in strong linkage disequilibrium) were those most associated with CARD9 expression. CARD9 is a plausible candidate for AS given its central role in the innate immune response.
Resumo:
Background: Although lentiviral vectors have been widely used for in vitro and in vivo gene therapy researches, there have been few studies systematically examining various conditions that may affect the determination of the number of viable vector particles in a vector preparation and the use of Multiplicity of Infection (MOI) as a parameter for the prediction of gene transfer events. Methods: Lentiviral vectors encoding a marker gene were packaged and supernatants concentrated. The number of viable vector particles was determined by in vitro transduction and fluorescent microscopy and FACs analyses. Various factors that may affect the transduction process, such as vector inoculum volume, target cell number and type, vector decay, variable vector - target cell contact and adsorption periods were studied. MOI between 0-32 was assessed on commonly used cell lines as well as a new cell line. Results: We demonstrated that the resulting values of lentiviral vector titre varied with changes of conditions in the transduction process, including inoculum volume of the vector, the type and number of target cells, vector stability and the length of period of the vector adsorption to target cells. Vector inoculum and the number of target cells determine the frequencies of gene transfer event, although not proportionally. Vector exposure time to target cells also influenced transduction results. Varying these parameters resulted in a greater than 50-fold differences in the vector titre from the same vector stock. Commonly used cell lines in vector titration were less sensitive to lentiviral vector-mediated gene transfer than a new cell line, FRL 19. Within 0-32 of MOI used transducing four different cell lines, the higher the MOI applied, the higher the efficiency of gene transfer obtained. Conclusion: Several variables in the transduction process affected in in vitro vector titration and resulted in vastly different values from the same vector stock, thus complicating the use of MOI for predicting gene transfer events. Commonly used target cell lines underestimated vector titre. However, within a certain range of MOI, it is possible that, if strictly controlled conditions are observed in the vector titration process, including the use of a sensitive cell line, such as FRL 19 for vector titration, lentivector-mediated gene transfer events could be predicted. © 2004 Zhang et al; licensee BioMed Central Ltd.
Resumo:
Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.
Resumo:
Objective. Ankylosing spondylitis (AS) is a debilitating chronic inflammatory condition with a high degree of familiality (λs=82) and heritability (>90%) that primarily affects spinal and sacroiliac joints. Whole genome scans for linkage to AS phenotypes have been conducted, although results have been inconsistent between studies and all have had modest sample sizes. One potential solution to these issues is to combine data from multiple studies in a retrospective meta-analysis. Methods: The International Genetics of Ankylosing Spondylitis Consortium combined data from three whole genome linkage scans for AS (n=3744 subjects) to determine chromosomal markers that show evidence of linkage with disease. Linkage markers typed in different centres were integrated into a consensus map to facilitate effective data pooling. We performed a weighted meta-analysis to combine the linkage results, and compared them with the three individual scans and a combined pooled scan. Results: In addition to the expected region surrounding the HLA-B27 gene on chromosome 6, we determined that several marker regions showed significant evidence of linkage with disease status. Regions on chromosome 10q and 16q achieved 'suggestive' evidence of linkage, and regions on chromosomes 1q, 3q, 5q, 6q, 9q, 17q and 19q showed at least nominal linkage in two or more scans and in the weighted meta-analysis. Regions previously associated with AS on chromosome 2q (the IL-1 gene cluster) and 22q (CYP2D6) exhibited nominal linkage in the meta-analysis, providing further statistical support for their involvement in susceptibility to AS. Conclusion: These findings provide a useful guide for future studies aiming to identify the genes involved in this highly heritable condition. . Published by on behalf of the British Society for Rheumatology.
Resumo:
Objectives. To determine whether genetic polymorphisms in or near the transforming growth factor β1 (TGFB1) locus were associated d with susceptibility to or severity of ankylosing spondylitis (AS). Methods. Five intragenic single-nucleotide polymorphisms (SNP) and three microsatellite markers flanking the TGFB1 locus were genotyped. Seven hundred and sixty-two individuals from 184 multiplex families were genotyped for the microsatellite markers and two of the promoter SNPs. One thousand and two individuals from 212 English and 170 Finnish families with AS were genotyped for all five intragenic SNPs. A structured questionnaire was used to assess the age of symptom onset, disease duration and disease severity scores, including the BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) and BASFI (Bath Ankylosing Spondylitis Functional Index). Results. A weak association was noted between the rare TGFB1 + 1632 T allele and AS in the Finnish population (P = 0.04) and in the combined data set (P = 0.03). No association was noted between any other SNPs or SNP haplotype and AS, even among those families with positive non-parametric linkage scores. The TGFB1 +1632 polymorphism was also associated with a younger age of symptom onset (English population, allele 2 associated with age of onset greater by 4.2 yr, P = 0.05; combined data set, allele 2 associated with age of onset greater by 3.2 yr, P = 0.02). A haplotype of coding region SNPs (TGFB1 +869/ +915+1632 alleles 2/1/2) was associated with age of symptom onset in both the English parent-case trios and the combined data set (English data set, haplotype 2/1/2 associated with age of onset greater by 4.9 yr, P = 0.03; combined data set, haplotype 2/1/2 associated with greater age of onset by 4.2 yr, P = 0.006). Weak linkage with AS susceptibility was noted and the peak LOD score was 1.3 at distance 2 cM centromeric to the TGFB1 gene. No other linkage or association was found between quantitative traits and the markers. Conclusion. This study suggests that the polymorphisms within the TGFB1 gene play at most a small role in AS and that other genes encoded on chromosome 19 are involved in susceptibility to the disease.
Resumo:
Genetic polymorphisms of the IL10 promoter region have been implicated in many autoimmune diseases, including seronegative spondyloarthropathies. We studied three SNPs (IL10-1087,-824, and -597) and two microsafellites(IL10R and IL10G) lying within the promoter region of IL10 for association with susceptibility to and clinical manifestations of ankylosing spondylitis (AS), a common form of spondyloarthritis. Four hundred and sixty-eight individuals from 182 Finnish families affected with AS were studied. No association between individual IL10 promoter region polymorphisms or marker haplotype was observed with susceptibility to AS, but weak association was noted between the IL10-597 and -824 SNPs and age of disease onset (P= 0.01 for each SNP). The IL10.G4 allele was associated with BASFI (corrected for disease duration) (P= 0.03). We conclude that IL10 promoter polymorphisms have no significant effect on susceptibility to AS, but may play a minor role in determining age of disease onset and disease severity. © 2003 Nature Publishing Group All rights reserved.
Resumo:
We have investigated the role of 23 candidate genes in the control of bone mineral density (BMD) by linkage studies in families of probands with osteoporosis (lumbar spine [LS] or femoral neck [FN] BMD T score < -2.5) and low BMD relative to an age- and gender-matched cohort (Z score < -2.0). One hundred and fifteen probands (35 male, 80 female) and 499 of their first- or second-degree relatives (223 males and 276 females) were recruited for the study. BMD was measured at the LS and FN using dual-energy X-ray absorptiometry and expressed as age- and gender-matched Z scores corrected for body mass index. The candidate genes studied were the androgen receptor, type I collagen A1 (COLIA1), COLIA2, COLIIA1, vitamin D receptor (VDR), colony-stimulating factor 1, calcium-sensing receptor, epidermal growth factor (EGF), estrogen receptor 1 (ESR1), fibrillin type 1, insulin-like growth factor 1, interleukin-1 alpha (IL-1α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-11 (IL-11), osteopontin, parathyroid hormone (PTH), PTH-related peptide, PTH receptor type 1 (PTHR1), transforming growth factor-beta 1, and tumor necrosis factors alpha and beta. Sixty-four microsatellites lying close to or within these genes were investigated for linkage with BMD. Using the program MapMaker/Sibs there was suggestive evidence of linkage between BMD and PTHR1 (maximum LOD score obtained [MLS] 2.7-3.5). Moderate evidence of linkage was also observed with EGF (MLS 1.8), COLIA1 (MLS 1.7), COLIIA1/VDR (MLS 1.7), ESR1 (MLS 1.4), IL-1α (MLS 1.4), IL-4 (MLS 1.2), and IL-6 (MLS 1.2). Variance components analysis using the program ACT, correcting for proband-wise ascertainment, also showed evidence of linkage (p ≤0.05) at markers close to or within the candidate genes IL- 1α, PTHR1, IL-6, and COLIIA1/VDR. Further studies will be required to confirm these findings, to refine the location of gene responsible for the observed linkage, and to screen the candidate genes targeted at these loci for mutations.