972 resultados para Integrated biomarker response


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO - Os sistemas de saúde deparam-se, actualmente, com novos paradigmas, ao nível da qualidade da prestação de cuidados de saúde, bem como no que se refere à necessidade de controlo dos custos com o sector da saúde, obrigando as organizações a adaptarem-se por forma a fornecerem a resposta mais adequada às crescentes necessidades dos indivíduos. O reconhecimento desta realidade tem levado os governos de muitos países a definir políticas orientadas para problemas de saúde específicos e a adoptar estratégias de intervenção que privilegiam uma abordagem integrada com o objectivo de melhorarem progressivamente o nível de saúde das populações, a qualidade dos cuidados prestados e a eficiência na utilização de recursos. Em Portugal, a aplicação dos princípios que estiveram na base dos modelos de gestão da doença, deu origem ao modelo experimental de Gestão Integrada da Doença, que incorpora a gestão clínica da doença, centrada no doente, com especial enfoque na sua autogestão e na clarificação das melhores práticas profissionais, visando a sua uniformização; a reorganização do modelo de prestação de cuidados, com a criação de Centros de Elevada Diferenciação e Centros de Tratamento, com especiais preocupações no que concerne à orientação do doente no sistema para que os cuidados lhe seja ministrados no nível mais adequado; um modelo de financiamento específico, indexado aos resultados, que reflicta a adopção das melhores práticas; um sistema de informação que permita a monitorização e avaliação constante deste processo. O desenvolvimento deste modelo organizacional tem-se revelado como uma estratégia inovadora e como uma ferramenta de elevado potencial para a melhoria da prestação de cuidados de saúde e para a promoção de uma maior efectividade e eficiência, tal como poderá, ainda, constituirse como um veículo, importante e permanente, de informação de apoio à decisão em Saúde. Este modelo visa, no fundo, promover uma acção concertada no sentido da obtenção de uma intervenção precisa, através da mobilização de recursos adequados, que permitam uma melhoria do estado de saúde, da qualidade de vida e do bem-estar global dos doentes. Esta abordagem passa pela colaboração e coordenação dos diferentes níveis de prestação de cuidados, no sentido de oferecerem cuidados integrados de saúde, com níveis de qualidade elevados em termos de prevenção, diagnóstico, tratamento, reabilitação e acompanhamento. ------------------------ --ABSTRACT – The health systems are faced with new paradigms, on one hand in the healthcare services delivered to the populations, and on the other hand, in the need to control costs in the health sector, forcing organizations to adapt and provide the most appropriate response to the individuals growing needs. The magnitude of this problem, in terms of public health, requires the adoption of a directed, targeted, planned and integrated action, based on clear and well defined strategies in order to obtain health gains, improving the quality of care and streamlining the costs. In Portugal, the application of those principles forming the basis of the disease management models, led to the Integrated Disease Management model which, apart from the clinical management of the disease, also incorporates the healthcare delivery structure reorganization, a specific financing model based on an information system that allows the process monitoring and evaluation. The development of Integrated Disease Management models is a central strategy and a tool for improving healthcare delivery, more effectively and efficiently, and can even be an important and permanent vehicle of information for health decision support. Therefore, it is important to promote a concerted action towards achieving a precise intervention, mobilizing the resources, improving the health status, quality of life and the overall patients’ wellbeing. This action means increasing collaboration and coordination of the different levels of care, offering integrated healthcare s

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International Conference on Emerging Technologies and Factory Automation (ETFA 2015), Industrial Communication Technologies and Systems, Luxembourg, Luxembourg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

20.00% 20.00%

Publicador:

Resumo:

6th Graduate Student Symposium on Molecular Imprinting

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2’-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The Anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented proposal favored Ab/Ag affinity. The immunosensor design was evaluated by Quartz-Crystal microbalance with Dissipation, Atomic Force Microscopy, Electrochemical Impedance Spectroscopy (EIS) and Square-Wave Voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charged transfer resistance across the electrochemical sep-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from Glucose, Urea and Creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate Specific Antigen (PSA) is the biomarker of choice for screening prostate cancer throughout the population, with PSA values above 10 ng/mL pointing out a high probability of associated cancer1. According to the most recent World Health Organization (WHO) data, prostate cancer is the commonest form of cancer in men in Europe2. Early detection of prostate cancer is thus very important and is currently made by screening PSA in men over 45 years old, combined with other alterations in serum and urine parameters. PSA is a glycoprotein with a molecular mass of approximately 32 kDa consisting of one polypeptide chain, which is produced by the secretory epithelium of human prostate. Currently, the standard methods available for PSA screening are immunoassays like Enzyme-Linked Immunoabsorbent Assay (ELISA). These methods are highly sensitive and specific for the detection of PSA, but they require expensive laboratory facilities and high qualify personal resources. Other highly sensitive and specific methods for the detection of PSA have also become available and are in its majority immunobiosensors1,3-5, relying on antibodies. Less expensive methods producing quicker responses are thus needed, which may be achieved by synthesizing artificial antibodies by means of molecular imprinting techniques. These should also be coupled to simple and low cost devices, such as those of the potentiometric kind, one approach that has been proven successful6. Potentiometric sensors offer the advantage of selectivity and portability for use in point-of-care and have been widely recognized as potential analytical tools in this field. The inherent method is simple, precise, accurate and inexpensive regarding reagent consumption and equipment involved. Thus, this work proposes a new plastic antibody for PSA, designed over the surface of graphene layers extracted from graphite. Charged monomers were used to enable an oriented tailoring of the PSA rebinding sites. Uncharged monomers were used as control. These materials were used as ionophores in conventional solid-contact graphite electrodes. The obtained results showed that the imprinted materials displayed a selective response to PSA. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8X10-11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed smaller sensitivity, with average slopes of -24.8 mV/decade. The best sensors were successfully applied to the analysis of serum samples, with percentage recoveries of 106.5% and relatives errors of 6.5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10−6 mol/L for a linear response after 8.0 × 10−7 mol/L with an anionic slope of −65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1st ASPIC International Congress

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.