888 resultados para Information by segment
Resumo:
With the growing number of XML documents on theWeb it becomes essential to effectively organise these XML documents in order to retrieve useful information from them. A possible solution is to apply clustering on the XML documents to discover knowledge that promotes effective data management, information retrieval and query processing. However, many issues arise in discovering knowledge from these types of semi-structured documents due to their heterogeneity and structural irregularity. Most of the existing research on clustering techniques focuses only on one feature of the XML documents, this being either their structure or their content due to scalability and complexity problems. The knowledge gained in the form of clusters based on the structure or the content is not suitable for reallife datasets. It therefore becomes essential to include both the structure and content of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both these kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. The overall objective of this thesis is to address these issues by: (1) proposing methods to utilise frequent pattern mining techniques to reduce the dimension; (2) developing models to effectively combine the structure and content of XML documents; and (3) utilising the proposed models in clustering. This research first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. A clustering framework with two types of models, implicit and explicit, is developed. The implicit model uses a Vector Space Model (VSM) to combine the structure and the content information. The explicit model uses a higher order model, namely a 3- order Tensor Space Model (TSM), to explicitly combine the structure and the content information. This thesis also proposes a novel incremental technique to decompose largesized tensor models to utilise the decomposed solution for clustering the XML documents. The proposed framework and its components were extensively evaluated on several real-life datasets exhibiting extreme characteristics to understand the usefulness of the proposed framework in real-life situations. Additionally, this research evaluates the outcome of the clustering process on the collection selection problem in the information retrieval on the Wikipedia dataset. The experimental results demonstrate that the proposed frequent pattern mining and clustering methods outperform the related state-of-the-art approaches. In particular, the proposed framework of utilising frequent structures for constraining the content shows an improvement in accuracy over content-only and structure-only clustering results. The scalability evaluation experiments conducted on large scaled datasets clearly show the strengths of the proposed methods over state-of-the-art methods. In particular, this thesis work contributes to effectively combining the structure and the content of XML documents for clustering, in order to improve the accuracy of the clustering solution. In addition, it also contributes by addressing the research gaps in frequent pattern mining to generate efficient and concise frequent subtrees with various node relationships that could be used in clustering.
Resumo:
In Bowenbrae Pty Ltd v Flying Fighters Maintenance and Restoration [2010] QDC 347 Reid DCJ made orders requiring the plaintiffs to make application under the Freedom of Information Act 1982 (Cth) (“the FOI Act”) for documents sought by the defendant.
Resumo:
Purpose - The purpose of this paper is to present a model for curricular integration of information literacy for undergraduate programs in higher education. Design/methodology/approach - Data are drawn from individual interviews at three universities in Australia and curricular integration working experience at a New Zealand university. Sociocultural theories are adopted in the research process and in the development of the model, Findings - Key characteristics of the curriculum integration of information literacy were identified and an information literacy integration model was developed. The S2J2 key behaviours for campus-wide multi-partner collaboration in information literacy integration were also identified. Research limitations/implications - The model was developed without including the employer needs. Through the process of further research, the point of view of the employer on how to provide information literacy education needs to be explored in order to strengthen the model in curricular design. Practical implications - The information literacy integration model was developed based on practical experience in higher education and has been applied in different undergraduate curricular programs. The model could be used or adapted by both librarians and academics when they integrate information literacy into an undergraduate curriculum from a lower level to a higher level. Originality/value - The information literacy integration model was developed based on recent PhD research. The model integrates curriculum, pedagogy and learning theories, information literacy theories, information literacy guidelines, people and collaborative together. The model provides a framework of how information literacy can be integrated into multiple courses across an undergraduate academic degree in higher education.
Resumo:
For more than a decade research in the field of context aware computing has aimed to find ways to exploit situational information that can be detected by mobile computing and sensor technologies. The goal is to provide people with new and improved applications, enhanced functionality and better use experience (Dey, 2001). Early applications focused on representing or computing on physical parameters, such as showing your location and the location of people or things around you. Such applications might show where the next bus is, which of your friends is in the vicinity and so on. With the advent of social networking software and microblogging sites such as Facebook and Twitter, recommender systems and so on context-aware computing is moving towards mining the social web in order to provide better representations and understanding of context, including social context. In this paper we begin by recapping different theoretical framings of context. We then discuss the problem of context- aware computing from a design perspective.
Resumo:
Given the substantial investment in information technology (IT), and the significant impact IT has on organizational success, organizations consume considerable resources to manage acquisition and use of their IT resources. While various arguments proposed suggest which IT governance arrangements may work best, our understanding of the effectiveness of such initiatives is limited. We examine the relationship between the effectiveness of IT steering committee driven IT governance initiatives and firm's IT management and IT infrastructure related capabilities. We further propose that firm's ITrelated capabilities generated through IT governance initiatives should improve its business processes and firm-level performance. We test these relationships empirically by a field survey. Results suggest that firms' effectiveness of IT steering committee driven IT governance initiatives positively relates to the level of their IT-related capabilities. We also found positive relationships between IT-related capabilities and internal process-level performance. Our results also support that improvement in internal process-level performance positively relates to improvement in customer service and firm-level performance.
Resumo:
Fibres are extremely common. They can originate directly from human and animal hair, and also from textiles in the form of clothing, upholstery and carpets. Hair and textile fibres are relatively easily shed and transferred, which means that it is highly likely that fibres will be found at crime scenes. If such fibres are carefully characterised they can be of immense value in the forensic environment. Vibrational spectroscopy is one of the most important methods for the characterisation of natural and synthetic fibres. The vibrational spectrum, whether mid-IR or Raman, can be considered to be a fingerprint of the molecular structure of the fibre and as such has a very high information content.
Resumo:
As access to networked digital communities increases, a growing number of teens participate in digital communities by creating and sharing a variety of content. The affordances of social media - ease of use, ubiquitous access, and communal nature - have made creating and sharing content an appealing process for teens. Teens primarily learn the practices of encountering and using information through social interaction and participation within digital communities. This article adopts the position that information literacy is the experience of using information to learn. It reports on an investigation into teens experiences in the United States, as they use information to learn how to create content and participate within the context of social media. Teens that participate in sharing art on sites such as DeiviantArt, website creation, blogging, and/or posting edited videos via YouTube and Vimeo, were interviewed. The interviews explored teens' information experiences within particular social and digital contexts. Teens discussed the information they used, how information was gathered and accessed, and explored the process of using that information to participate in the communities.
Resumo:
ICT is becoming a prominent part of healthcare delivery but brings with it information privacy concerns for patients and competing concerns by the caregivers. A proper balance between these issues must be established in order to fully utilise ICT capabilities in healthcare. Information accountability is a fairly new concept to computer science which focuses on fair use of information. In this paper we investigate the different issues that need to be addressed when applying information accountability principles to manage healthcare information. We briefly introduce an information accountability framework for handling electronic health records (eHR). We focus more on digital rights management by considering data in eHRs as digital assets and how we can represent privacy policies and data usage policies as these are key factors in accountability systems.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
In information retrieval (IR) research, more and more focus has been placed on optimizing a query language model by detecting and estimating the dependencies between the query and the observed terms occurring in the selected relevance feedback documents. In this paper, we propose a novel Aspect Language Modeling framework featuring term association acquisition, document segmentation, query decomposition, and an Aspect Model (AM) for parameter optimization. Through the proposed framework, we advance the theory and practice of applying high-order and context-sensitive term relationships to IR. We first decompose a query into subsets of query terms. Then we segment the relevance feedback documents into chunks using multiple sliding windows. Finally we discover the higher order term associations, that is, the terms in these chunks with high degree of association to the subsets of the query. In this process, we adopt an approach by combining the AM with the Association Rule (AR) mining. In our approach, the AM not only considers the subsets of a query as “hidden” states and estimates their prior distributions, but also evaluates the dependencies between the subsets of a query and the observed terms extracted from the chunks of feedback documents. The AR provides a reasonable initial estimation of the high-order term associations by discovering the associated rules from the document chunks. Experimental results on various TREC collections verify the effectiveness of our approach, which significantly outperforms a baseline language model and two state-of-the-art query language models namely the Relevance Model and the Information Flow model
Resumo:
This volume represents the proceedings of the 12th ENTER conference held at Innsbruck in 2005. While the conference also accepts work-in-progress papers and includes a Ph.D. workshop, the proceedings contain 51 research papers by 102 authors. The general theme of the conference was eBusiness is here—what is next? and the papers cover a diverse range of topics across nine tracks. This reviewer has adopted the approach of succinctly summarising the contribution of each of the papers, in the order they appear....
Resumo:
Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.
Resumo:
Background When observers are asked to identify two targets in rapid sequence, they often suffer profound performance deficits for the second target, even when the spatial location of the targets is known. This attentional blink (AB) is usually attributed to the time required to process a previous target, implying that a link should exist between individual differences in information processing speed and the AB. Methodology/Principal Findings The present work investigated this question by examining the relationship between a rapid automatized naming task typically used to assess information-processing speed and the magnitude of the AB. The results indicated that faster processing actually resulted in a greater AB, but only when targets were presented amongst high similarity distractors. When target-distractor similarity was minimal, processing speed was unrelated to the AB. Conclusions/Significance Our findings indicate that information-processing speed is unrelated to target processing efficiency per se, but rather to individual differences in observers' ability to suppress distractors. This is consistent with evidence that individuals who are able to avoid distraction are more efficient at deploying temporal attention, but argues against a direct link between general processing speed and efficient information selection.
Resumo:
As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.
Resumo:
The study shows an alternative solution to existing efforts at solving the problem of how to centrally manage and synchronise users’ Multiple Profiles (MP) across multiple discrete social networks. Most social network users hold more than one social network account and utilise them in different ways depending on the digital context (Iannella, 2009a). They may, for example, enjoy friendly chat on Facebook1, professional discussion on LinkedIn2, and health information exchange on PatientsLikeMe3 In this thesis the researcher proposes a framework for the management of a user’s multiple online social network profiles. A demonstrator, called Multiple Profile Manager (MPM), will be showcased to illustrate how effective the framework will be. The MPM will achieve the required profile management and synchronisation using a free, open, decentralized social networking platform (OSW) that was proposed by the Vodafone Group in 2010. The proposed MPM will enable a user to create and manage an integrated profile (IP) and share/synchronise this profile with all their social networks. The necessary protocols to support the prototype are also proposed by the researcher. The MPM protocol specification defines an Extensible Messaging and Presence Protocol (XMPP) extension for sharing vCard and social network accounts information between the MPM Server, MPM Client, and social network sites (SNSs). . Therefore many web users need to manage disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time-consuming, inefficient, and may lead to lost opportunity. The writer of this thesis adopted a research approach and a number of use cases for the implementation of the project. The use cases were created to capture the functional requirements of the MPM and to describe the interactions between users and the MPM. In the research a development process was followed in establishing the prototype and related protocols. The use cases were subsequently used to illustrate the prototype via the screenshots taken of the MPM client interfaces. The use cases also played a role in evaluating the outcomes of the research such as the framework, prototype, and the related protocols. An innovative application of this project is in the area of public health informatics. The researcher utilised the prototype to examine how the framework might benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians. This will give a more complete picture of the patient’s background than is currently available and will prove helpful in providing the right treatment. The MPM prototype and related protocols have a high application value as they can be integrated into the real OSW platform and so serve users in the modern digital world. They also provide online users with a real platform for centrally storing their complete profile data, efficiently managing their personal information, and moreover, synchronising the overall complete profile with each of their discrete profiles stored in their different social network sites.