991 resultados para Inductive Power Decoupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the study of the bubble formation dynamics in the compensation chamber (CC) of the evaporator in Loop Heat Pipes. A series of experiments were conducted at different heat loads and bubbles in the CC were visualized. Bubbles diameter, frequency and velocity were measured and correlated against heat loads. Temperatures were measured at various locations and heat transfer coefficient was calculated. Performance of the LHP evaporator was evaluated at different heat loads. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature, high pressure transcritical condensing CO2 cycle (TC-CO2) is compared with transcritical steam (TC-steam) cycle. Performance indicators such as thermal efficiency, volumetric flow rates and entropy generation are used to analyze the power cycle wherein, irreversibilities in turbo-machinery and heat exchangers are taken into account. Although, both cycles yield comparable thermal efficiencies under identical operating conditions, TC-CO2 plant is significantly compact compared to a TC-steam plant. Large specific volume of steam is responsible for a bulky system. It is also found that the performance of a TC-CO2 cycle is less sensitive to source temperature variations, which is an important requirement of a solar thermal system. In addition, issues like wet expansion in turbine and vacuum in condenser are absent in case of a TC-CO2 cycle. External heat addition to working fluid is assumed to take place through a heat transfer fluid (HTF) which receives heat from a solar receiver. A TC-CO2 system receives heat though a single HTF loop, whereas, for TC-steam cycle two HTF loops in series are proposed to avoid high temperature differential between the steam and HTF. (C) 2013 P. Garg. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an underlay cognitive radio (CR) system, a secondary user can transmit when the primary is transmitting but is subject to tight constraints on the interference it causes to the primary receiver. Amplify-and-forward (AF) relaying is an effective technique that significantly improves the performance of a CR by providing an alternate path for the secondary transmitter's signal to reach the secondary receiver. We present and analyze a novel optimal relay gain adaptation policy (ORGAP) in which the relay is interference aware and optimally adapts both its gain and transmit power as a function of its local channel gains. ORGAP minimizes the symbol error probability at the secondary receiver subject to constraints on the average relay transmit power and on the average interference caused to the primary. It is different from ad hoc AF relaying policies and serves as a new and fundamental theoretical benchmark for relaying in an underlay CR. We also develop a near-optimal and simpler relay gain adaptation policy that is easy to implement. An extension to a multirelay scenario with selection is also developed. Our extensive numerical results for single and multiple relay systems quantify the power savings achieved over several ad hoc policies for both MPSK and MQAM constellations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information available in frequency response data is equivalently available in the time domain as a response due to an impulse excitation. The idea to pursue this equivalence to estimate series capacitance is linked to the well-known fact that under impulse excitation, the line/neutral current in a transformer has three distinct components, of which, the initial capacitive component is the first to manifest, followed by the oscillatory and inductive components. Of these, the capacitive component is temporally well separated from the rest-a crucial feature permitting its direct access and analysis. Further, the winding initially behaves as a pure capacitive network, so the initial component must obviously originate from only the (series and shunt) capacitances. With this logic, it should therefore be possible to estimate series capacitance, just by measuring the initial capacitive component of line current and the total shunt capacitance. The principle of the method and details of its implementation on two actual isolated transformerwindings (uniformly wound) are presented. For implementation, a low-voltage recurrent surge generator, a current probe, and a digital oscilloscope are all that is needed. The method is simple and requires no programming and needs least user intervention, thus paving the way for its widespread use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing need to understand the factors that control the formation of different yet related multicomponent adducts such as cocrystals, solid solutions and eutectics from both fundamental and application perspectives. Benzoic acid and its structural analogues, having gradation in inductive force strengths, are found to serve as excellent coformers to comprehend the formation of above adducts with the antiprotozoal drug ornidazole. The combination of the drug with para-amino and -hydroxybenzoic acids resulted in cocrystals in accordance with the induction strength complementarity between the participant hydrogen bond donor-acceptor groups. The lack of adequate inductive forces for combinations with benzoic acid and other coformers was exploited to make eutectics of the drug. The isomorphous/isostructural relationship between para-amino and -hydroxybenzoic acid-drug cocrystals was utilized to make solid solutions, i.e. solid solutions of cocrystals. All in all, we successfully steered and expanded the supramolecular solid-form space of ornidazole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adapting the power of secondary users (SUs) while adhering to constraints on the interference caused to primary receivers (PRxs) is a critical issue in underlay cognitive radio (CR). This adaptation is driven by the interference and transmit power constraints imposed on the secondary transmitter (STx). Its performance also depends on the quality of channel state information (CSI) available at the STx of the links from the STx to the secondary receiver and to the PRxs. For a system in which an STx is subject to an average interference constraint or an interference outage probability constraint at each of the PRxs, we derive novel symbol error probability (SEP)-optimal, practically motivated binary transmit power control policies. As a reference, we also present the corresponding SEP-optimal continuous transmit power control policies for one PRx. We then analyze the robustness of the optimal policies when the STx knows noisy channel estimates of the links between the SU and the PRxs. Altogether, our work develops a holistic understanding of the critical role played by different transmit and interference constraints in driving power control in underlay CR and the impact of CSI on its performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical estimation of the dissociation constant, or pK(a), of weak acids continues to be a challenging field. Here, we show that ab initio CarParrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free-energy profile of the dissociation reaction provide reasonable estimates of the pK(a) value. Water molecules, sufficient to complete the three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid, and the difference in their values provides the estimate for pK(a). We show for a series of organic acids that CPMD simulations in conjunction with metadynamics can provide reasonable estimates of pK(a) values. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cis- and trans-butenedioic acid, and the isomers of hydroxybenzoic acid. These systems were chosen to highlight that the procedure could correctly account for the influence of the inductive effect as well as hydrogen bonding on pK(a) values of weak organic acids. In both situations, the CPMD metadynamics procedure faithfully reproduces the experimentally observed trend and the magnitudes of the pK(a) values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the development and performance evaluation of prototypes of biogas-fuelled stationary power generators in the range of 1 kW. Strategies to achieve high engine efficiency namely pulsed manifold injection, electronic throttle control and dual spark plugs, have been incorporated in the prototype. A complete closed-loop control of the engine operation to maintain a steady engine speed of 3000 rpm (+/- 5%) across the entire load range while maintaining an optimum fuel-air equivalence ratio is made possible by an electronic control unit (ECU) controlling the injection duration, ignition timing and throttle position. This study specifically focuses on the response of the generator to transient loads, and the overall efficiency obtained. The results obtained from testing the prototype have been found to be satisfactory and show that biogas power generators for low power applications can be made efficient (overall efficiency of 19% at electrical load of 640 W) using the strategies of biogas fuel injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, Li2-x MnO3-y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 A degrees C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 mu Ah mu m(-1) cm(-2) in the potential window 2.0-3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 mu Ah mu m(-1) cm(-2) at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 mu Ah mu m(-1) cm(-2) was achieved in the potential window 2.0-4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic power dissipation due to redundant switching is an important metric in data-path design. This paper focuses on the use of ingenious operand isolation circuits for low power design. Operand isolation attempts to reduce switching by clamping or latching the output of a first level of combinational circuit. This paper presents a novel method using power supply switching wherein both PMOS and NMOS stacks of a circuit are connected to the same power supply. Thus, the output gets clamped or latched to the power supply value with minimal leakage. The proposed circuits make use of only two transistors to clamp the entire Multiple Input Multiple Output (MIMO) block. Also, the latch-based designs have higher drive strength in comparison to the existing methods. Simulation results have shown considerable area reduction in comparison to the existing techniques without increasing timing overhead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunistic selection in multi-node wireless systems improves system performance by selecting the ``best'' node and by using it for data transmission. In these systems, each node has a real-valued local metric, which is a measure of its ability to improve system performance. Our goal is to identify the best node, which has the largest metric. We propose, analyze, and optimize a new distributed, yet simple, node selection scheme that combines the timer scheme with power control. In it, each node sets a timer and transmit power level as a function of its metric. The power control is designed such that the best node is captured even if. other nodes simultaneously transmit with it. We develop several structural properties about the optimal metric-to-timer-and-power mapping, which maximizes the probability of selecting the best node. These significantly reduce the computational complexity of finding the optimal mapping and yield valuable insights about it. We show that the proposed scheme is scalable and significantly outperforms the conventional timer scheme. We investigate the effect of. and the number of receive power levels. Furthermore, we find that the practical peak power constraint has a negligible impact on the performance of the scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the experience of the new design of using impinging jet spray columns for scrubbing hydrogen sulfide from biogas that has been developed by Indian Institute of Science and patented. The process uses a chelated polyvalent metal ion which oxidizes the hydrogen sulfide to sulfur as a precipitate. The sulfur generated is filtered and the scrubbing liquid recycled after oxidation. The process involves in bringing contact the sour gas with chelated liquid in the spray columns where H2S reacts with chelated Fe3+ and precipitates as sulfur, whereas Fe3+ gets reduced to Fe2+. Fe2+ is regenerated to Fe3+ by reaction of oxygen in air in a separate packed column. The regenerated liquid is recirculated. Sulfur is filtered and separated as a byproduct. The paper presents the experience in using the spray towers for hydrogen sulfide removal and further use of the clean gas for generating power using gas engines. The maximum allowable limit of H2S for the gas engine is 200 ppm (v/v) in order to prevent any corrosion of engine parts and fouling of the lubricating oil. With the current ISET process, the hydrogen sulfide from the biogas is cleaned to less than 100 ppm (v/v) and the sweet gas is used for power generation. The system is designed for 550 NM3/hr of biogas and inlet H2S concentration of 2.5 %. The inlet concentration of the H2S is about 1 - 1.5 % and average measured outlet concentration is about 30 ppm, with an average gas flow of about 300 - 350 NM3/hr, which is the current gas production rate. The sweet gas is used for power generation in a 1.2 MWe V 12 engine. The average power generation is about 650 - 750 kWe, which is the captive load of the industry. The plant is a CHP (combined heat power) unit with heat from the cylinder cooling and flue being recovered for hot water and steam generation respectively. The specific fuel consumption is 2.29 kWh/m(3) of gas. The system has been in operation for more than 13,000 hours in last one year in the industry. About 8.4 million units of electricity has been generated scrubbing about 2.1 million m3 of gas. Performance of the scrubber and the engine is discussed at daily performance level and also the overall performance with an environment sustenance by precipitating over 27 tons of sulfur.