940 resultados para In-house preparations of pooled plasma
Resumo:
"Printed at the Essex House Press."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
[1] Union: Clogher/Counties: Monaghan & Tyrone -- [2] Union: Castlerea/Counties: Roscommon & Mayo -- [3] Union: Castletowndelvin/Counties: Meath & Westmeath -- [4] Union: Cootehill/County: Cavan -- [5] Union: Clifton/County: Galway, in which is included the Island of Inishbofin in the County of Mayo -- [6] Union: Claremorris/County: Mayo -- [7] Union: Cootehill/County: Managhan -- [8] Union: Clones/(Part of) County: Monaghan -- [9] Union: Ardee/Counties: Louth & Meath -- [10] Union: Bailieborough/County: Cavan -- [11] Union: Ballina/Counties: Mayo & Sligo -- [12] Union: Ballinasloe/County: Roscommon -- [13] Union: Ballinrobe/County: Mayo -- [14] Union: Ballymahon/Counties: Longford & Westmeath -- [15] Union: Ballymahon/County: Westmeath -- [16] Union: Ballyshannon/County: Donegal -- [17] Union: Ballyshannon/County: Leitrim -- [18] Union: Ballyvaghan/County: Clare -- [19] Union: Baltinglass/County: Wicklow -- [20] Unions: Bandon & Kinsale/County: Cork -- [21] Union: Bawnboy/County: Cavan -- [22] Union: Bawnboy/County: Leitrim -- [23] Union: Belmullet/County: Mayo -- [24] Union: Carrick-on-Shannon/County: Roscommon -- [25] Union: Carrickmacross/County: Monaghan -- [26] Union: Castlebar/County: Mayo -- [27] Union: Castleblayney (part of)/County: Monaghan -- [28] Union: Corrofin/County: Clare -- [29] Barony: Upper Deece/County: Meath -- [30] Barony: Cork/County: Cork -- [31] Barony: Coshmore & Coshbride/County: Waterford -- [32] Barony: Trough/County: Monaghan -- [33] Union: Donegal/County: Donegal -- [34] Union: Drogheda/Counties: Louth & Meath -- [35] Union: Dromore, West/County: Sligo -- [36] Union: Dunfanaghy/County: Donegal -- [37] Unions: Cahersiveen, Kenmare, and Killarney/County: Kerry -- [38] Barony: Dunkerron South/County: Kerry -- [39] Union: Dunshaughlin/County: Meath -- [40] Union: Edenderry/County: Meath -- [41] Union: Edenderry/County: Kildare -- [42] Union: Edenderry/King's County -- [43] Union: Enniskillen/County: Cavan -- [44] Union: Ennistimon/County: Clare -- [45] Barony: Glenahiry/County: Waterford -- [46] Union: Gort/Counties: Galway & Clare -- [47] Union: Granard/County: Longford -- [48] Union: Granard/County: Westmeath -- [49] Barony: Iffa & Offa West/County: Tipperary -- [50] Barony: Imokilly/County: Cork -- [51] Union: Kells/County: Meath -- [52] Barony: Kenry/County: Limerick -- [53] Barony: Kerrycurrihy/County: Cork -- [54] Barony: Kilculliheen/County: Waterford -- [55] Union: Killadysert/County: Clare -- [56] Union: Killala/County: Mayo -- [57] Union: Letterkenny/County: Donegal -- [58] Union: Limerick/County: Limerick -- [59] Union: Longford/County: Longford -- [60] Barony: Magunihy/County: Kerry -- [61] Unions: Mallow & Cork/County: Cork -- [62] Union: Manorhamilton/County: Leitrim -- [63] Union: Millford/County: Donegal -- [64] Union: Mountbellew/County: Galway -- [65] Union: Naas/County: Wicklow -- [66] Union: Navan/County: Meath -- [67] Union: Newport/County: Mayo -- [68] Union: Oldcastle/County: Meath -- [69] Barony: Upper Ormond/County: Tipperary, North Riding -- [70] Barony: Orrery & Kilmore/County: Cork -- [71] Union: Oughterard/ Counties: Galway & Mayo together with that portion of the Union of Ballinrobe in the County of Galway -- [72] Union: Portumna/County: Galway -- [73] Barony: Rathdown/County: Wicklow -- [74] Barony: Salt/County: Kildare -- [75] Barony: South Salt/County: Kildare -- [76] Union: Scarriff/Counties: Clare & Galway -- [77] Union: Shillelagh/County: Wicklow -- [78] Union: Stranorlar/County: Donegal -- [79] Union: Tobercurry/County: Sligo -- [80] Union: Trim/County: Meath -- [81] Barony: Trughanacmy/County: Kerry -- [82] Barony: Upperthird/County: Waterford -- [83] Union: Wexford/County: Wexford -- [84] Barony: Castleknock/County: Dublin -- [85] Barony: Balrothery, East/County: Dublin -- [86] Barony: Newcastle/County: Dublin -- [87] City of Dublin, North Dublin Union, Arran Quay Ward -- [88] City of Dublin, South Dublin Union, Fitzwilliam Ward -- [89] City of Dublin, North Dublin Union, Inns Quay Ward -- [90] City of Dublin, South Dublin Union, Mansion House Ward -- [91] City of Dublin, South Dublin Union, Merchants' Quay Ward -- [92] City of Dublin, North Dublin Union, Mountjoy Ward -- [93] City of Dublin, North Dublin Union, North Dock Ward -- [94] City of Dublin, North Dublin Union, North City Ward -- [95] City of Dublin, North Dublin Union, Rotundo Ward -- [96] City of Dublin, South Dublin Union, Royal Exchange Ward -- [97] City of Dublin, South Dublin Union, South City Ward -- [98] City of Dublin, South Dublin Union, South Dock Ward -- [99] City of Dublin, South Dublin Union, Trinity Ward -- [100] City of Dublin, South Dublin Union, Usher's Quay Ward -- [101] City of Dublin, South Dublin Union, Wood Quay Ward.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
A novel and precise assay that facilitates high-throughput screening of fibrinolytic agents was developed based on the automated assessment of the euglobulin clot lysis time in microtitre plates. Euglobulin fractions from fresh plasma samples were assessed over 28 days to determine the inter-assay and intra-assay precision. The intra-assay (coefficient of variation range, 0.7-2.6%) and inter-assay precision (coefficient of variation range, 6.8-12.1%) was found to be well within limits required by the Food and Drug Administration. On day 1 and day 28, the results of the microtitre plate euglobulin clot lysis time method were compared with tissue plasminogen activator activity, plasminogen activator inhibitor activity and results produced on fibrin plates. All comparisons were found to correlate significantly. The validity of this method for assaying fibrinolytic agents was assessed by comparing dose-response curves for streptokinase produced using fibrin plates and this method. The critical influence of ambient temperature on the inter-assay reproducibility of this method was established by testing samples over a range of temperatures between 20degreesC and 40degreesC. (C) 2004 Lippincott Williams Wilkins.
Resumo:
Doped ceria (CeO2) compounds are fluorite-type oxides that show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in application of these materials for low (500 degrees-650 degrees C) temperature operation of solid oxide fuel cells (SOFCs). To improve the conductivity in dysprosium (Dy) doped CeO2, nano-size round shape particles were prepared using a coprecipitation method. The dense sintered bodies with small grain sizes (< 300 nm) were fabricated using a combined process of spark plasma sintering (SPS) and conventional sintering (CS). Dy-doped CeO2 sintered body with large grains (1.1 mu m) had large micro-domains. The conductivity in the sintered body was low (-3.2 S/cm at 500 degrees C). On the other hand, the conductivity in the specimens obtained by the combined process was considerably improved. The micro-domain size in the grain was minimized using the present process. It is concluded that the enhancement of conductivity in dense specimens produced by the combined process (SPS+CS) is attributable to the microstructural changes within the grains.
Resumo:
Birds show striking interspecific variation in their use of carotenoid-based coloration. Theory predicts that the use of carotenoids for coloration is closely associated with the availability of carotenoids in the diet but, although this prediction has been supported in single-species studies and those using small numbers of closely related species, there have been no broad-scale quantitative tests of the link between carotenoid coloration and diet. Here we test for such a link using modern comparative methods, a database on 140 families of birds and two alternative avian phylogenies. We show that carotenoid pigmentation is more common in the bare parts (legs, bill and skin) than in plumage, and that yellow coloration is more common than red. We also show that there is no simple, general association between the availability of carotenoids in the diet and the overall use of carotenoid-based coloration. However, when we look at plumage coloration separately from bare part coloration, we find there is a robust and significant association between diet and plumage coloration, but not between diet and bare part coloration. Similarly, when we look at yellow and red plumage colours separately, we find that the association between diet and coloration is typically stronger for red coloration than it is for yellow coloration. Finally, when we build multivariate models to explain variation in each type of carotenoid-based coloration we find that a variety of life history and ecological factors are associated with different aspects of coloration, with dietary carotenoids only being a consistent significant factor in the case of variation in plumage. All of these results remain qualitatively unchanged irrespective of the phylogeny used in the analyses, although in some cases the precise life history and ecological variables included in the multivariate models do vary. Taken together, these results indicate that the predicted link between carotenoid coloration and diet is idiosyncratic rather than general, being strongest with respect to plumage colours and weakest for bare part coloration. We therefore suggest that, although the carotenoid-based bird plumage may a good model for diet-mediated signalling, the use of carotenoids in bare part pigmentation may have a very different functional basis and may be more strongly influenced by genetic and physiological mechanisms, which currently remain relatively understudied.
Resumo:
Oxysterol binding protein (OSBP) and its homologs have been shown to regulate lipid metabolism and vesicular transport. However, the exact molecular function of individual OSBP homologs remains uncharacterized. Here we demonstrate that the yeast OSBP homolog, Osh6p, bound phosphatidic acid and phosphoinositides via its N-terminal half containing the conserved OSBP-related domain (ORD). Using a green fluorescent protein fusion chimera, Osh6p was found to localize to the cytosol and patch-like or punctate structures in the vicinity of the plasma membrane. Further examination by domain mapping demonstrated that the N-terminal half was associated with FM4-64 positive membrane compartments; however, the C-terminal half containing a putative coiled-coil was localized to the nucleoplasm. Functional analysis showed that the deletion of OSH6 led to a significant increase in total cellular ergosterols, whereas OSH6 overexpression caused both a significant decrease in ergosterol levels and resistance to nystatin. Oleate incorporation into sterol esters was affected in OSH6 overexpressing cells. However, Lucifer yellow internalization, and FM4-64 uptake and transport were unaffected in both OSH6 deletion and overexpressing cells. Furthermore, osh6 Delta exhibited no defect in carboxypeptidase Y transport and maturation. Lastly, we demonstrated that both the conserved ORD and the putative coiled-coil motif were indispensable for the in vivo function of Osh6p. These data suggest that Osh6p plays a role primarily in regulating cellular sterol metabolism, possibly stero transport.