996 resultados para Imaging sensors
Resumo:
Patients with stenosed biologic pulmonary conduits require redo cardiac surgery to prevent severe right ventricular dysfunction. Following the latest trends, the trans-catheter pulmonary stent-valve implantation represents a new fascinating alternative carrying a lower operative risk, compared with the standard open-heart re-intervention. Traditionally, the pulmonary stent valve is positioned off pump, under fluoroscopic control, and requires angiographies. However, alternative tools not requiring contrast injections for the intra-operative cardiac imaging have to be also considered strongly. The usefulness of intravascular ultrasound for the positioning of aortic endoprosthesis has already been proven in previous reports and, following the same principle, we have started to routinely implant balloon-expandable stent valves (Edwards Sapien? THV) in stenosed pulmonary valve conduits using intravascular ultrasound for the stent-valve positioning without angiography. We describe the intra-operative intravascular imaging technique with technical details.
Resumo:
AIMS: The time course of atherosclerosis burden in distinct vascular territories remains poorly understood. We longitudinally evaluated the natural history of atherosclerotic progression in two different arterial territories using high spatial resolution magnetic resonance imaging (HR-MRI), a powerful, safe, and non-invasive tool. METHODS AND RESULTS: We prospectively studied a cohort of 30 patients (mean age 68.3, n = 9 females) with high Framingham general cardiovascular disease 10-year risk score (29.5%) and standard medical therapy with mild-to-moderate atherosclerosis intra-individually at the level of both carotid and femoral arteries. A total of 178 HR-MRI studies of carotid and femoral arteries performed at baseline and at 1- and 2-year follow-up were evaluated in consensus reading by two experienced readers for lumen area (LA), total vessel area (TVA), vessel wall area (VWA = TVA - LA), and normalized wall area index (NWI = VWA/TVA). At the carotid level, LA decreased (-3.19%/year, P = 0.018), VWA increased (+3.83%/year, P = 0.019), and TVA remained unchanged. At the femoral level, LA remained unchanged, VWA and TVA increased (+5.23%/year and +3.11%/year, both P < 0.01), and NWI increased for both carotid and femoral arteries (+2.28%/year, P = 0.01, and +1.8%/year, P = 0.033). CONCLUSION: The atherosclerotic burden increased significantly in both carotid and femoral arteries. However, carotid plaque progression was associated with negative remodelling, whereas the increase in femoral plaque burden was compensated by positive remodelling. This finding could be related to anatomic and flow differences and/or to the distinct degree of obstruction in the two arterial territories.
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data.
Resumo:
Bacterial reporters are live, genetically engineered cells with promising application in bioanalytics. They contain genetic circuitry to produce a cellular sensing element, which detects the target compound and relays the detection to specific synthesis of so-called reporter proteins (the presence or activity of which is easy to quantify). Bioassays with bacterial reporters are a useful complement to chemical analytics because they measure biological responses rather than total chemical concentrations. Simple bacterial reporter assays may also replace more costly chemical methods as a first line sample analysis technique. Recent promising developments integrate bacterial reporter cells with microsystems to produce bacterial biosensors. This lecture presents an in-depth treatment of the synthetic biological design principles of bacterial reporters, the engineering of which started as simple recombinant DNA puzzles, but has now become a more rational approach of choosing and combining sensing, controlling and reporting DNA 'parts'. Several examples of existing bacterial reporter designs and their genetic circuitry will be illustrated. Besides the design principles, the lecture also focuses on the application principles of bacterial reporter assays. A variety of assay formats will be illustrated, and principles of quantification will be dealt with. In addition to this discussion, substantial reference material is supplied in various Annexes.
Resumo:
The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)-based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon.
Resumo:
Backup warning system devices were evaluated to determine if they would alert winter maintenance snow plow drivers to obstacles directly behind the trailer and out of view of the driver when a unit is backed up. When the sensors on the back of the tow plow were covered with snow during plowing operations, the sensor would go off in the cab and continue going off, which would result in drivers turning the volume of the unit way down. One shop stated that the wireless transmitted signal would be hit or miss depending on the winter weather that they were operating in. The sensors on the back of the tow plow trailer would come in contact with salt brine and in this situation one of the sensors did go bad. The weatherproof box that was designed to keep the system waterproof did not fully keep the moisture out. It was found that the system did alert drivers of items behind the unit and there were no backup accidents reported during the research period.
Resumo:
Necrotizing fasciitis is a rare, rapidly spreading, deep-seated infection causing thrombosis of the blood vessels located in the fascia. Necrotizing fasciitis is a surgical emergency. The diagnosis typically relies on clinical findings of severe sepsis and intense pain, although subacute forms may be difficult to recognize. Imaging studies can help to differentiate necrotizing fasciitis from infections located more superficially (dermohypodermitis). The presence of gas within the necrotized fasciae is characteristic but may be lacking. The main finding is thickening of the deep fasciae due to fluid accumulation and reactive hyperemia, which can be visualized using computed tomography and, above all, magnetic resonance imaging (high signal on contrast-enhanced T1 images and T2 images, best seen with fat saturation). These findings lack specificity, as they can be seen in non-necrotizing fasciitis and even in non-inflammatory conditions. Signs that support a diagnosis of necrotizing fasciitis include extensive involvement of the deep intermuscular fascias (high sensitivity but low specificity), thickening to more than 3mm, and partial or complete absence on post-gadolinium images of signal enhancement of the thickened fasciae (fairly high sensitivity and specificity). Ultrasonography is not recommended in adults, as the infiltration of the hypodermis blocks ultrasound transmission. Thus, imaging studies in patients with necrotizing fasciitis may be challenging to interpret. Although imaging may help to confirm deep tissue involvement and to evaluate lesion spread, it should never delay emergency surgical treatment in patients with established necrotizing fasciitis.
Resumo:
Shoulder disorders, including rotator cuff tears, affect the shoulder function and result in adapted muscle activation. Although these adaptations have been studied in controlled conditions, free-living activities have not been investigated. Based on the kinematics measured with inertial sensors and portable electromyography, the objectives of this study were to quantify the duration of the muscular activation in the upper trapezius (UT), medial deltoid (MD) and biceps brachii (BB) during motion and to investigate the effect of rotator cuff tear in laboratory settings and daily conditions. The duration of movements and muscular activations were analysed separately and together using the relative time of activation (TEMG/mov). Laboratory measurements showed the parameter's reliability through movement repetitions (ICC > 0.74) and differences in painful shoulders compared with healthy ones (p < 0.05): longer activation for UT; longer activation for MD during abduction and tendency to shorter activation in other movements; shorter activation for BB. In daily conditions, TEMG/mov for UT was longer, whereas it was shorter for MD and BB (p < 0.05). Moreover, significant correlations were observed between these parameters and clinical scores. This study thus provides new insights into the rotator cuff tear effect on duration of muscular activation in daily activity.