955 resultados para Image-based cytometry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the general problem of synchronizing the data on two devices using a minimum amount of communication, a core infrastructural requirement for a large variety of distributed systems. Our approach considers the interactive synchronization of prioritized data, where, for example, certain information is more time-sensitive than other information. We propose and analyze a new scheme for efficient priority-based synchronization, which promises benefits over conventional synchronization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the development of a world wide web image search engine that crawls the web collecting information about the images it finds, computes the appropriate image decompositions and indices, and stores this extracted information for searches based on image content. Indexing and searching images need not require solving the image understanding problem. Instead, the general approach should be to provide an arsenal of image decompositions and discriminants that can be precomputed for images. At search time, users can select a weighted subset of these decompositions to be used for computing image similarity measurements. While this approach avoids the search-time-dependent problem of labeling what is important in images, it still holds several important problems that require further research in the area of query by image content. We briefly explore some of these problems as they pertain to shape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ImageRover is a search by image content navigation tool for the world wide web. The staggering size of the WWW dictates certain strategies and algorithms for image collection, digestion, indexing, and user interface. This paper describes two key components of the ImageRover strategy: image digestion and relevance feedback. Image digestion occurs during image collection; robots digest the images they find, computing image decompositions and indices, and storing this extracted information in vector form for searches based on image content. Relevance feedback occurs during index search; users can iteratively guide the search through the selection of relevant examples. ImageRover employs a novel relevance feedback algorithm to determine the weighted combination of image similarity metrics appropriate for a particular query. ImageRover is available and running on the web site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ongoing work towards appearance-based 3D hand pose estimation from a single image is presented. A large database of synthetic hand views is generated using a 3D hand model and computer graphics. The views display different hand shapes as seen from arbitrary viewpoints. Each synthetic view is automatically labeled with parameters describing its hand shape and viewing parameters. Given an input image, the system retrieves the most similar database views, and uses the shape and viewing parameters of those views as candidate estimates for the parameters of the input image. Preliminary results are presented, in which appearance-based similarity is defined in terms of the chamfer distance between edge images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appearance-based framework for 3D hand shape classification and simultaneous camera viewpoint estimation is presented. Given an input image of a segmented hand, the most similar matches from a large database of synthetic hand images are retrieved. The ground truth labels of those matches, containing hand shape and camera viewpoint information, are returned by the system as estimates for the input image. Database retrieval is done hierarchically, by first quickly rejecting the vast majority of all database views, and then ranking the remaining candidates in order of similarity to the input. Four different similarity measures are employed, based on edge location, edge orientation, finger location and geometric moments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Camera Canvas is an image editing software package for users with severe disabilities that limit their mobility. It is specially designed for Camera Mouse, a camera-based mouse-substitute input system. Users can manipulate images through various head movements, tracked by Camera Mouse. The system is also fully usable with traditional mouse or touch-pad input. Designing the system, we studied the requirements and solutions for image editing and content creation using Camera Mouse. Experiments with 20 subjects, each testing Camera Canvas with Camera Mouse as the input mechanism, showed that users found the software easy to understand and operate. User feedback was taken into account to make the software more usable and the interface more intuitive. We suggest that the Camera Canvas software makes important progress in providing a new medium of utility and creativity in computing for users with severe disabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent assistive technology can greatly improve the daily lives of people with severe paralysis, who have limited communication abilities. People with motion impairments often prefer camera-based communication interfaces, because these are customizable, comfortable, and do not require user-borne accessories that could draw attention to their disability. We present an overview of assistive software that we specifically designed for camera-based interfaces such as the Camera Mouse, which serves as a mouse-replacement input system. The applications include software for text-entry, web browsing, image editing, animation, and music therapy. Using this software, people with severe motion impairments can communicate with friends and family and have a medium to explore their creativity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved method for deformable shape-based image indexing and retrieval is described. A pre-computed index tree is used to improve the speed of our previously reported on-line model fitting method; simple shape features are used as keys in a pre-generated index tree of model instances. In addition, a coarse to fine indexing scheme is used at different levels of the tree to further improve speed while maintaining matching accuracy. Experimental results show that the speedup is significant, while accuracy of shape-based indexing is maintained. A method for shape population-based retrieval is also described. The method allows query formulation based on the population distributions of shapes in each image. Results of population-based image queries for a database of blood cell micrographs are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearest neighbor retrieval is the task of identifying, given a database of objects and a query object, the objects in the database that are the most similar to the query. Retrieving nearest neighbors is a necessary component of many practical applications, in fields as diverse as computer vision, pattern recognition, multimedia databases, bioinformatics, and computer networks. At the same time, finding nearest neighbors accurately and efficiently can be challenging, especially when the database contains a large number of objects, and when the underlying distance measure is computationally expensive. This thesis proposes new methods for improving the efficiency and accuracy of nearest neighbor retrieval and classification in spaces with computationally expensive distance measures. The proposed methods are domain-independent, and can be applied in arbitrary spaces, including non-Euclidean and non-metric spaces. In this thesis particular emphasis is given to computer vision applications related to object and shape recognition, where expensive non-Euclidean distance measures are often needed to achieve high accuracy. The first contribution of this thesis is the BoostMap algorithm for embedding arbitrary spaces into a vector space with a computationally efficient distance measure. Using this approach, an approximate set of nearest neighbors can be retrieved efficiently - often orders of magnitude faster than retrieval using the exact distance measure in the original space. The BoostMap algorithm has two key distinguishing features with respect to existing embedding methods. First, embedding construction explicitly maximizes the amount of nearest neighbor information preserved by the embedding. Second, embedding construction is treated as a machine learning problem, in contrast to existing methods that are based on geometric considerations. The second contribution is a method for constructing query-sensitive distance measures for the purposes of nearest neighbor retrieval and classification. In high-dimensional spaces, query-sensitive distance measures allow for automatic selection of the dimensions that are the most informative for each specific query object. It is shown theoretically and experimentally that query-sensitivity increases the modeling power of embeddings, allowing embeddings to capture a larger amount of the nearest neighbor structure of the original space. The third contribution is a method for speeding up nearest neighbor classification by combining multiple embedding-based nearest neighbor classifiers in a cascade. In a cascade, computationally efficient classifiers are used to quickly classify easy cases, and classifiers that are more computationally expensive and also more accurate are only applied to objects that are harder to classify. An interesting property of the proposed cascade method is that, under certain conditions, classification time actually decreases as the size of the database increases, a behavior that is in stark contrast to the behavior of typical nearest neighbor classification systems. The proposed methods are evaluated experimentally in several different applications: hand shape recognition, off-line character recognition, online character recognition, and efficient retrieval of time series. In all datasets, the proposed methods lead to significant improvements in accuracy and efficiency compared to existing state-of-the-art methods. In some datasets, the general-purpose methods introduced in this thesis even outperform domain-specific methods that have been custom-designed for such datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral methods of graph partitioning have been shown to provide a powerful approach to the image segmentation problem. In this paper, we adopt a different approach, based on estimating the isoperimetric constant of an image graph. Our algorithm produces the high quality segmentations and data clustering of spectral methods, but with improved speed and stability.