945 resultados para Identity by descent matrix
Resumo:
The region spanning residues 95-146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 has been purified and crystallized and diffraction data have been collected to a resolution of 2.6 angstrom. Several attempts to solve the structure by the molecular-replacement method using the available tetrameric structures of this domain were unsuccessful despite a sequence identity of 73% to the already known structures. A more systematic approach with a dimer as the search model led to an unexpected pentameric structure using the program Phaser. The various steps involved in arriving at this molecular-replacement solution, which unravelled a case of subtle variation between different oligomeric states unknown at the time of solving the structure, are presented in this paper.
Resumo:
We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
Resumo:
The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]
Resumo:
In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.
Resumo:
The acoustical behavior of an elliptical chamber muffler having an end-inlet and side-outlet port is analyzed semi-analytically. A uniform piston source is assumed to model the 3-D acoustic field in the elliptical chamber cavity. Towards this end, we consider the modal expansion of acoustic pressure field in the elliptical cavity in terms of angular and radial Mathieu functions, subjected to rigid wall condition, whereupon under the assumption of a point source, Green's function is obtained. On integrating this function over piston area of the side or end port and dividing it by piston area, one obtains the acoustic field, whence one can find the impedance matrix parameters characterizing the 2-port system. The acoustic performance of these configurations is evaluated in terms of transmission loss (TL). The analytical results thus obtained are compared with 3-D HA carried on a commercial software for certain muffler configurations. These show excellent agreement, thereby validating the 3-D semi-analytical piston driven model. The influence of the chamber length as well as the angular and axial location of the end and side ports on TL performance is also discussed, thus providing useful guidelines to the muffler designer. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Chitosan (CS)-polyvinyl alcohol (PVA) cross-linked with sulfosuccinic acid (SSA) and modified with sulfonated polyethersulfone (SPES) mixed-matrix membranes are reported for their application in direct methanol fuel cells (DMFCs). Polyethersulfone (PES) is sulfonated by chlorosulfonic acid and factors affecting the sulfonation reaction, such as time and temperature, are studied. The ion-exchange capacity, degree of sulfonation, sorption, and proton conductivity for the mixed-matrix membranes are investigated. The mixed-matrix membranes are also characterised for their mechanical and thermal properties. The methanol-crossover flux across the mixed-matrix membranes is studied by measuring the mass balance of methanol using the density meter. The methanol cross-over for these membranes is found to be about 33% lower in relation to Nafion-117 membrane. The DMFC employing CS-PVA-SPES mixed-matrix membrane with an optimum content of 25 wt % SPES delivers a peak power-density of 5.5 mW cm-2 at a load current-density of 25 mA cm-2 while operating at 70 degrees C. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.
Resumo:
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.
Resumo:
Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report the variation of glass transition temperature in supported thin films of polymer nanocomposites, consisting of polymer grafted nanoparticles embedded in a homopolymer matrix. We observe a systematic variation of the estimated glass transition temperature T-g, with the volume fraction of added polymer grafted nanoparticles. We have correlated the observed T-g variation with the underlying morphological transitions of the nanoparticle dispersion in the films. Our data also suggest the possibility of formation of a low-mobility glass or gel-like layer of nanoparticles at the interface, which could play a significant role in determining T-g of the films provided. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4773442]
Resumo:
The possibility of establishing an accurate relative chronology of the early solar system events based on the decay of short-lived Al-26 to Mg-26 (half-life of 0.72 Myr) depends on the level of homogeneity (or heterogeneity) of Al-26 and Mg isotopes. However, this level is difficult. to constrain precisely because of the very high precision needed for the determination of isotopic ratios, typically of +/- 5 ppm. In this study, we report for the first time a detailed analytical protocol developed for high precision in situ Mg isotopic measurements ((25)mg/(24)mg and (26)mg/Mg-24 ratios, as well as Mg-26 excess) by MC-SIMS. As the data reduction process is critical for both accuracy and precision of the final isotopic results, factors such as the Faraday cup (FC) background drift and matrix effects on instrumental fractionation have been investigated. Indeed these instrumental effects impacting the measured Mg-isotope ratios can be as large or larger than the variations we are looking for to constrain the initial distribution of Al-26 and Mg isotopes in the early solar system. Our results show that they definitely are limiting factors regarding the precision of Mg isotopic compositions, and that an under- or over-correction of both FC background instabilities and instrumental isotopic fractionation leads to important bias on delta Mg-25, delta(26)mg and Delta Mg-26 values (for example, olivines not corrected for FC background drifts display Delta Mg-26 values that can differ by as much as 10 ppm from the truly corrected value). The new data reduction process described here can then be applied to meteoritic samples (components of chondritic meteorites for instance) to accurately establish their relative chronology of formation.
Resumo:
Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for LVCSR systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication.In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on a 1138 word vocabulary RM1 task using Sphinx 3.7 system show that, for a typical case the matrix multiplication approach leads to overall speedup of 46%. Both the low-rank approximation methods increase the speedup to around 60%, with the former method increasing the word error rate (WER) from 3.2% to 6.6%, while the latter increases the WER from 3.2% to 3.5%.
Resumo:
SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. LEAFY HULL STERILE1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.
Resumo:
CrSi and Cr1-x Fe (x) Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples were characterized by powder X-ray diffraction, scanning, and transmission electron microscopy and electron microprobe analysis. The final crystallite size of CrSi2 obtained from the XRD patterns is about 40 and 80 nm for SS- and WC-milled powders, respectively, whereas the size of the second phase inclusions in the hot pressed samples is about 1-5 mu m. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, and figure of merit (ZT) were analyzed in the temperature range from 300 to 800 K. While the ball-milling process results in a lower electrical resistivity and thermal conductivity due to the presence of the inclusions and the refinement of the matrix microstructure, respectively, the Seebeck coefficient is negatively affected by the formation of the inclusions which leads to a modest improvement of ZT.