976 resultados para ION MERCURY SYSTEM
Resumo:
The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films.
Resumo:
Ca2Al2SiO7:Eu3+ was prepared by the sol-gel method. Through the emission spectrum of Eu3+ ion, the fluorescence parameters such as Omega(i) (i = 2,4) and radiative transition probabilities of D-5(0)-F-7(j) were calculated. The Pb2+ ion with bigger radius has an effect on the fluorescence spectra of Eu3+ which can be explained by the structure of the matrix. Simultaneously, the energy transfers between mercury-like ions (Pb2+ and Bi3+) and Eu3+ ion were observed. The D-5(4) and D-5(2) energy levels of Eu3+ are the resonance ones for Pb2+ ion.
Resumo:
The kinetics of facilitated ion-transfer (FIT) reactions at high driving force across the water/1,2-dichloroethane (W/DCE) interface is investigated by scanning electrochemical microscopy (SECM). The transfers of lithium and sodium ions facilitated by dibenzo-18-crown-6 (DB18C6) across the polarized W/DCE interface are chosen as model systems because they have the largest potential range that can be controlled externally. By selecting the appropriate ratios of the reactant concentrations (Kr c(M)+/c(DB18C6)) and using nanopipets as the SECM tips, we obtained a series of rate constants (k(f)) at various driving forces (Delta(O)(W) phi(ML+)(0') - Es, Delta(O)(W) phi(ML+)(0') is the formal potential of facilitated ion transfer and Es is the potential applied externally at the substrate interface) based on a three-electrode system. The FIT rate constants k(f) are found to be dependent upon the driving force. When the driving force is low, the dependence of 1n k(f) on the driving force is linear with a transfer coefficient of about 0.3. It follows the classical Butler-Volmer theory and then reaches a maximum before it decreases again when we further increase the driving forces. This indicates that there exists an inverted region, and these behaviors have been explained by Marcus theory.
Resumo:
Kinetics and mechanism of stripping of yttrium(III) previously extracted by mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272, HA), and 2-ethylhexyl phosphonic acid mono-2-ethylhexl ester (P507, HB) dissolved in heptane have been investigated by constant interfacial-area cell by laminar flow. The corresponding equilibrium stripping equation and equilibrium constant were obtained. The studies of effects of the stirring rate and temperature on the stripping rate show that the stripping regime is dependent on the stripping conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of mixtures of Cyanex 272 and P507 at heptane-water interfaces makes the interface the most probable locale for the chemical reactions. The stripping rate constant is obtained, and the value is compared with that of the system with Cyanex 272 and P507 alone. It is concluded that the stripping ability with the mixtures is easier than that of P507 due to lower the activation energy of the mixtures. The stripping rate equation has also been obtained, and the rate-determining steps are the two-step interfacial chemical reactions as predicted from interfacial reaction models.
Resumo:
The present paper reports a study of the extraction of HNO3 with Cyancx923 (C923)-n-heptane. A third phase appears at different aqueous HNO3 concentrations for various initial C923 concentrations. Data analysis indicates that almost all of HNO3 and H2O are extracted into the middle phase. More HNO3 and water at a fixed ratio are solubilized in the reverse micelles or microemulsion in the third phase, which leads to a sharp increase of their concentration. The effect of temperature on the phase behavior of the three-phase system has also been investigated.
Resumo:
A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.
Resumo:
A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.
Resumo:
Phase behavior of the extraction system, Cyanex 923-heptane/Ce4+-H2SO4 has been studied and compared with Cyanex 923-heptane/H2SO4 System. Cerium(IV) is mainly extracted into the third phase, and its concentration in the third phase first increases with the increasing aqueous acid concentration, reaches maximum and then decreases. At higher acidity, cerium(IV) is hardly extracted in the third phase. The phase behavior and change of the contents of acid and water are similar to those in the acid system. The acid concentration increases with increase of the aqueous acid in the whole extraction region while the water content first decreases with it and then increases after the third phase formation. The third phase has a characteristic lamellar structure formed by the aggregates of Cyanex 923 (.) (H2SO4)(2) (.) H2O as those in the case of acid system. The third phase loaded Ce(IV) has been used to prepare ultrafine CeO2 powder conveniently by precipitation with oxalic acid, and powders with size mostly smaller than 100 nm can be obtained.
Resumo:
The electrochemiluminescence (ECL) of the Ru(bgy)(3)(2-)/S2O82- system in purely aqueous solution at a carbon paste electrode can be clearly seen with the naked eye for Ru(bpy)(3)(2+) concentrations higher than 1 mmol L-1. The log-log plot of the emmitted light intensity vs. Ru(bpy)(3)(2+) concentration is linear over the region 10(-3)-10(-7) mol L-1 with a correlation coefficient of 0.997. The ECL intensity increases linearly with the S2O82- concentration from 10(-6) mol L-1 up to 0.3 mmol L-1 and drops off sharply at concentrations higher than 1 mmol L-1. In addition, a weak ECL signal was obtained when the potential was biased more negative than -0.6 V even in the absence of S2O82-.
Resumo:
The BaMA(10)O(17) (M = Be, Mg, Ca, Zn, Cd, Mn, Co, Li) system has been synthesized by solid state method and characterized by XRD. The results show that when M is Mg, Zn, Mn, Co, Li, there exists the structure of beta-Al2O3 for BaMAl10O17 system, and when M indicates Cd, beta-Al2O3 structure is formed accompanying alpha-Al2O3 phase, and when M represents Be and Ca, beta-Al2O3 structure cannot be formed. This demonstrates that the condition forming beta-Al2O3 structure compounds for the system BaMAl10O17 is 0.05nm < R-M < 0.09nm (R-M represents the radius of M). The thought that if a M ion can form a stable spinel structure there exsits a corresponding magnetoplumbite and beta-alumina structure is proposed for BaMAl10O17 system according to the experimental results. When M is Li, Be, Zn, Eu2+ activator produces an emission of nearly 450 nm with half height width about 50 nm, when M is Mn, there are simultaneously the emissions of Eu2+ and Mn2+ and the excitation energy of Eu2+ can transfer to Mn2+ in the host, when M is Cd, Eu2+ displays a double-emission band, which can be explained by the Jahn-Teller's effect. It is possible for the system BaMAl10O17 with M being Li, Be, Zn to become blue-emitting component in three colour lamp through further study.
Resumo:
Tetraethylammonium (TEA(+)) ion transfer across micro-liquid/liquid interface has been studied with cyclic voltammetric measurements. The results showed that voltammetric responses of the currents obtained were peak and steady-state for TEA(+) transfer from inside and outside of the micropipette when the radius was bigger than 3 mum. However, the currents were pseudo-steady-state when the micropipette diameters were less than 3 mum. The values of i(p) decreased with decreasing concentration of TEA(+). Peak current was proportional to the square root of the scan rate and it obeyed a Randles-Sevcik type relationship. The mechanism of mass transport across a liquid/ liquid microinterface for TEA(+) system was aslo discussed.
Resumo:
The dependence of the structure of the hosts on the M ion radius in MMgAl10O17 (M = Be, Mg, Ca, Sr, Ba, Pb, Eu, Mn, Fe, Co, Ni, Zn, Cd, Sn) system was studied and the luminescence of Eu2+ the mixed phase system was discussed. When M ion radius is less than 0.10 nm, the system MMgAl10O17 constructs by the mixed phases consisting of manegtoplumbite and spinel, alpha-alumina or spinel and alpha-alumina. In the mixed phase of manegtoplumbite and spinel and alpha-alumina, Eu2+ ion preferentially occupies lattice site of the cations in manegtoplumbite well matched with the radius and charge of Eu2+. There exists only d-->f transition emission of Eu2+ and no characteristic emission of Eu3+ occurs in those hosts. In the mixed phase of spinel and alpha-alumina, Eu2+ can enter the lattice site of Mg2+ ion or Al3+ ion and the d-->f and f-->f transition of Eu2+ can been observed respectively. Meanwhile, since the radius and charge of matrix lattice ions substituted by Eu2+ do not match with those of Eu2+, the valence state of Eu2+ is unstable. Eu2+ is partly changed into Eu3+ and the emission of Eu3+ is obviously observed even under the condition of reduction atmosphere. If reaction temperature is more than 1 150 degrees C, Al2O3 forms alpha-Al2O3 structure, the f-->f transition of Eu2+ appears. If reaction temperature is less than 1 150 degrees C, a mixed phase of alpha-Al2O3 and gamma-Al2O3 is formed, the f-->f transition of Eu2+ disappears and a new band emission from d-->f transition of Eu2+ occurs.
Resumo:
The system Al2O3-B2O3-Eu2O3, with Al/B ratio varying from 4.5 to 2 and Eu/(Al+B)=0.02, was synthesized by solid state reaction. The vibrational spectra of the system Al2O3-B2O3-Eu2O3 were investigated. It was found that no definite change in the regions of 1200 similar to 1000 cm(-1) due to the adsorption BO4 groups with decreasing Al/B ratio, indicating no Al3+ ion was substituted by Eu3+ ions and other changes revealed that there was an amorphous phase and Eu3+ ions may dope into the amorphous phase. The studies on the luminescent properties of the system Al2O3-B2O3 also show that Eu3+ ions dope into amorphous phase. The investigations on the phonon sideband of Eu3+ indicate that electron-phonon coupling strength decreases with Al/B ratio change from 3 to 2, leading to the non-radiative decay rate decreases and the Eu3+-emission intensity increase.
Resumo:
Gas phase ion-molecular reactions of endohedral metallofullerenes with the self-chemical ionization ion system of vinyl acetate, benzene and acetone in the ion source of the mass spectrometer have been studied. Several derivatized endohedral metallofullerene cations [M@C-82-C2H3O](+), [M-2@C-80-C2H3O](+), [M@C-82-C6H6](+) and [M@C-82-CO-CH3](+) are observed as the major products. The experimental results indicate that endohedral metallofullerenes have active gas phase reactivities and can be efficiently derivatized by some small organic cations.
Resumo:
Cyclic voltammetry was employed to study the influence of sterols on the lipophilic ion transport through the BLM. The mole fraction of the sterols (cholesterol, oxidized cholesterol). as referred to total lipid, was varied in a range of 0-0.8. Data demonstrate that a thin-layer model is suitable to this BLM system. By this model, the number of charges transported per lipophilic ion, the concentration of the ion in the membrane bulk phase and the aqueous/membrane phase partition coefficient could be calculated. These parameters proved that sterols had an obvious influence on the lipophilic ion transport. Cholesterol had a stronger influence on the ion transport than oxidized cholesterol. Its incorporation into egg lecithin membranes increased the partition coefficient beta of the ion up to more than 3-fold. Yet, oxidized cholesterol incorporated into egg lecithin membranes only increased the beta up to less than 2-fold, and the beta had no great variation at different oxidized cholesterol mole fractions. The higher beta obtained was partly due to the trace amount of solvent existing in the core of the lipid bilayers. At the different sterol mole fractions, combining the change of beta with the change of peak current, we also concluded that sterols had somewhat inhibiting effect on the ion transport at the higher sterols mole fraction (>0.4). These results are explained in terms of the possible change of dipole potential of the membrane produced by sterols and the decrease of the membrane fluidity caused by the condensation effect of sterols and the thinning effect caused by sterols. The substituting group (in the oxidized cholesterol) had some inhibiting effects on the ion transport at higher mole fractions (oxidized cholesterol mole fraction >0.4).