943 resultados para ION CHEMISTRY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for site-specific, nitrobenzyl-induced photochemical proteolysis of diverse proteins expressed in living cells has been developed based on the chemistry of the unnatural amino acid (2-nitrophenyl)glycine (Npg). Using the in vivo nonsense codon suppression method for incorporating unnatural amino acids into proteins expressed in Xenopus oocytes, Npg has been incorporated into two ion channels: the Drosophila Shaker B K+ channel and the nicotinic acetylcholine receptor. Functional studies in vivo show that irradiation of proteins containing an Npg residue does lead to peptide backbone cleavage at the site of the novel residue. Using this method, evidence is obtained for an essential functional role of the “signature” Cys128–Cys142 disulfide loop of the nAChR α subunit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstructing the history of ambient levels of metals by using tree-ring chemistry is controversial. This controversy can be resolved in part through the use of selective microanalysis of individual wood cells. Using a combination of instrumental neutron activation analysis and secondary ion mass spectrometry, we have observed systematic inhomogeneity in the abundance of toxic metals (Cr, As, Cd, and Pb) within annual growth rings of Quercus rubra (red oak) and have characterized individual xylem members responsible for introducing micrometer-scale gradients in toxic metal abundances. These gradients are useful for placing constraints on both the magnitude and the mechanism of heavy metal translocation within growing wood. It should now be possible to test, on a metal-by-metal basis, the suitability of using tree-ring chemistries for deciphering long-term records of many environmental metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) has been employed to carry out the determination of both major anions and cations in water samples. The anion quantification has been performed by means of a new automatic accessory. In this device chloride has been determined by continuously adding a silver nitrate solution. As a result solid silver chloride particles are formed and retained on a nylon filter inserted in the line. The emission intensity is read at a silver characteristic wavelength. By plotting the drop in silver signal versus the chloride concentration, a straight line is obtained. As regards bicarbonate, this anion has been on-line transformed into carbon dioxide with the help of a 2.0 mol L−1 nitric acid stream. Carbon signal is linearly related with bicarbonate concentration. Finally, information about sulfate concentration has been achieved by means of the measurement of sulfur emission intensity. All the steps have been simultaneously and automatically performed. With this setup detection limits have been 1.0, 0.4 and 0.09 mg L−1 for chloride, bicarbonate and sulfate, respectively. Furthermore, it affords good precision with RSD below 6 %. Cation (Ca, Mg, Na and K) concentration, in turn, has been obtained by simultaneously reading the emission intensity at characteristic wavelengths. The obtained limits of detection have been 8 × 10−3, 2 × 10−3, 8 × 10−4 and 10−2 mg L−1 for sodium, potassium, magnesium and calcium, respectively. As regards sample throughput, about 30 samples h−1 can be analysed. Validation results have revealed that the obtained concentrations for these anions are not significantly different as compared to the data provided by conventional methods. Finally, by considering the data for anions and cations, precise ion balances have been obtained for well and mineral water samples.