974 resultados para INSERTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase behavior of a model system of colloidal platelets and nonadsorbing polymers is studied using computer simulations and perturbation theory. The equation of state for the pure platelet reference system is obtained by Monte Carlo simulations, and the free volume fraction accessible to polymers is measured by a trial insertion method. The free volume fraction is also calculated using scaled particle theory. Subsequently, the phase diagram for platelet-polymer mixtures is calculated. For a platelet aspect ratio L/D=0.1 and a polymer to platelet size ratio d/D>0.2, we observe coexistence between two isotropic phases with different densities. For smaller polymers d/D

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have shown that a 100 MHz Love wave device can be used to determine whether room temperature ionic liquids (RTILs) are Newtonian fluids and have developed a technique that allows the determination of the density-viscosity product, rho eta of a Newtonian RTIL. In addition, a test for a Newtonian response was established by relating the phase change to insertion loss change. Five concentrations of a water-miscible RTIL and seven pure RTILs were measured. The changes in phase and insertion loss were found to vary linearly with the square root of the density-viscosity product for values up to (rho eta)(1/2) similar to 10 kg m(-2) s(-1/2). The square root of the density-viscosity product was deduced from the changes in either phase or insertion loss using glycerol as a calibration liquid. In both cases, the deduced values of rho eta agree well with those measured using viscosity and density meters. Miniaturization of the device, beyond that achievable with the lower-frequency quartz crystal microbalance approach, to measure smaller volumes is possible. The ability to fabricate Love wave and other surface acoustic wave sensors using planar metallization technologies gives potential for future integration into lab-on-a-chip analytical systems for characterizing ionic liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design and characterizations of an ultrafast single-pole single-throw (SPST) absorptive differential switch are presented. The switch exhibits low insertion loss less than 1 dB, and isolation better than 16 dB from 40 to 70 GHz. Sub-nanosecond switching time is achieved by adopting a differential current-steering technique. The total measured rise and fall time are 75 ps envisaging that switching rates up to 13 Gb/s are achievable. To our best knowledge, this is the fastest, lowest insertion loss V-band SPST switch yet reported that can operate over a wide bandwidth of 30 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design is described of a double layer frequency selective surface which can produce a differential phase shift of 180 ° as the wave propagates through it at normal incidence. The hand of an applied circularly polarized signal is reversed due to the 180° phase shift, and it is demonstrated that the exit circularly polarized output signal can be phase advanced or phase retarded by 180 ° upon rotation of the elements comprising the structure. This feature allows the surface to act as a spatial phase shifter. In this paper the beam steering capabilities of a 10 × 10 array of such elements are demonstrated. Here the individual elements comprising the array are rotated relative to each other in order to generate a progressive phase shift. At normal incidence the 3 dB Axial Ratio Bandwidth for LHCP to RHCP conversion is 5.3% and the insertion loss was found to be -2.3 dB, with minimum axial ratio of 0.05 dB. This array is shown to be able to steer a beam from -40 ° to +40 ° while holding axial ratio at the pointing angle to below 4 dB. The measured radiation patterns match the theoretical calculation and full-wave simulation results. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new inline coupling topology for narrowband helical resonator filters is proposed that allows to introduce selectively located transmission zeros (TZs) in the stopband. We show that a pair of helical resonators arranged in an interdigital configuration can realize a large range of in-band coupling coefficient values and also selectively position a TZ in the stopband. The proposed technique dispenses the need for auxiliary elements, so that the size, complexity, power handling and insertion loss of the filter are not compromised. A second order prototype filter with dimensions of the order of 0.05 lambda, power handling capability up to 90 W, measured insertion loss of 0.18 dB and improved selectivity is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eubacteria of the genus Rhodococcus are a diverse group of microorganisms commonly found in many environmental niches from soils to seawaters and as plant and animal pathogens. They exhibit a remarkable ability to degrade many organic compounds and their economic importance is becoming increasingly apparent. Although their genetic organisation is still far from understood, there have been many advances in recent years. Reviewed here is the current knowledge of rhodococci relating to gene transfer, recombination, plasmid replication and functions, cloning vectors and reporter genes, gene expression and its control, bacteriophages, insertion sequences and genomic rearrangements. Further fundamental studies of Rhodococcus genetics and the application of genetic techniques to the these bacteria will be needed for their continued biotechnological exploitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1985 Jacques Attali proposed a new modality for music. He suggests that there be “not a new music, but a new way of making music... a radically new form of the insertion of music into communication” (Attali 134). What Attali foretold has become a firm reality in contemporary musical practice. One has only to look at any current musical activity to encounter work that relies heavily on real-time interaction and dynamic generation and/or modification of materials. But why is this ontologically different ‘mode of essentially interactive and transformative existence’ (Ziarek 195), this ‘new way of making music’, so attractive to contemporary artists? What is motivating artists to abandon a production model in favor of a model of real-time interactive exploration? I will argue that at the foundation of this new artistic ontology lies Deleuze’s concept of the virtual. It is a recognition of the virtual power of music, that music making can be an act of invention, a process where one can discover something never before experienced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mounting accuracy of satellite payload and ADCS (attitude determination and control subsystem) seats is one of the requirements to achieve the satellite mission with acceptable performance. Components of mounting inaccuracy are technological inaccuracies, residual plastic deformations after loading (during transportation and orbital insertion), elastic deformations, and thermal deformations during orbital operation. This paper focuses on estimation of thermal deformations of satellite structure. Thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, Perform thermal finite-element analysis applying the finite-difference model results as boundary conditions; and calculate the resultant thermal strain. Next, applying the resultant thermal strain, perform finite-element structure analysis to evaluate structure deformations at the payload and ADCS equipments seats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WbaP is a membrane enzyme that initiates O antigen synthesis in Salmonella enterica by catalysing the transfer of galactose 1-phosphate (Gal-1-P) onto undecaprenyl phosphate (Und-P). WbaP possesses at least three predicted structural domains: an N-terminal region containing four transmembrane helices, a large central periplasmic loop, and a C-terminal domain containing the last transmembrane helix and a large cytoplasmic tail. In this work, we investigated the contribution of each region to WbaP function by constructing a series of mutant WbaP proteins and using them to complement O antigen synthesis in DeltawbaP mutants of S. enterica serovars Typhi and Typhimurium. Truncated forms of WbaP lacking the periplasmic loop exhibited altered chain-length distributions in O antigen polymerization, suggesting that this central domain is involved in modulating the chain-length distribution of the O polysaccharide. The N-terminal and periplasmic domains were dispensable for complementation of O antigen synthesis in vivo, suggesting that the C-terminal domain carries the sugar-phosphate transferase activity. However, despite the fact that they complemented the synthesis of O antigen in the DeltawbaP mutant in vivo, membrane extracts containing WbaP derivatives without the N-terminal domain failed to transfer radioactive Gal from UDP-Gal into a lipid-rich fraction. These results suggest that the N-terminal region of WbaP, which contains four transmembrane domains, is essential for the insertion or stability of the protein in the bacterial membrane. We propose that the domain structure of WbaP enables this protein not only to function in the transfer of Gal-1-P to Und-P but also to establish critical interactions with additional proteins required for the correct assembly of O antigen in S. enterica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic respiratory infections by Burkholderia cenocepacia in cystic fibrosis patients are associated with increased morbidity and mortality, but virulence factors determining the persistence of the infection in the airways are not well characterized. Using a chronic pulmonary infection model, we previously identified an attenuated mutant with an insertion in a gene encoding an RpoN activator protein, suggesting that RpoN and/or components of the RpoN regulon play a role in B. cenocepacia virulence. In this study, we demonstrate that a functional rpoN gene is required for bacterial motility and biofilm formation in B. cenocepacia K56-2. Unlike other bacteria, RpoN does not control flagellar biosynthesis, as evidenced by the presence of flagella in the rpoN mutant. We also demonstrate that, in macrophages, the rpoN mutant is rapidly trafficked to lysosomes while intracellular wild-type B. cenocepacia localizes in bacterium-containing vacuoles that exhibit a pronounced delay in phagolysosomal fusion. Rapid trafficking to the lysosomes is also associated with the release of red fluorescent protein into the vacuolar lumen, indicating loss of bacterial cell envelope integrity. Although a role for RpoN in motility and biofilm formation has been previously established, this study is the first demonstration that the RpoN regulon in B. cenocepacia is involved in delaying phagolysosomal fusion, thereby prolonging bacterial intracellular survival within macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a bacterium commonly found in the environment, is an important opportunistic pathogen in patients with cystic fibrosis (CF). Very little is known about the mechanisms by which B. cenocepacia causes disease, but chronic infection of the airways in CF patients may be associated, at least in part, with the ability of this bacterium to survive within epithelial cells and macrophages. Survival in macrophages occurs in a membrane-bound compartment that is distinct from the lysosome, suggesting that B. cenocepacia prevents phagolysosomal fusion. In a previous study, we employed signature-tagged mutagenesis and an agar bead model of chronic pulmonary infection in rats to identify B. cenocepacia genes that are required for bacterial survival in vivo. One of the most significantly attenuated mutants had an insertion in the mgtC gene. Here, we show that mgtC is also needed for growth of B. cenocepacia in magnesium-depleted medium and for bacterial survival within murine macrophages. Using fluorescence microscopy, we demonstrated that B. cenocepacia mgtC mutants, unlike the parental isolate, colocalize with the fluorescent acidotropic probe LysoTracker Red. At 4 h postinfection, mgtC mutants expressing monomeric red fluorescent protein cannot retain this protein within the bacterial cytoplasm. Together, these results demonstrate that, unlike the parental strain, an mgtC mutant does not induce a delay in phagolysosomal fusion and the bacterium-containing vacuoles are rapidly targeted to the lysosome, where bacteria are destroyed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning of bacterial genomes to identify essential genes is of biological interest, for understanding the basic functions required for life, and of practical interest, for the identification of novel targets for new antimicrobial therapies. In particular, the lack of efficacious antimicrobial treatments for infections caused by the Burkholderia cepacia complex is causing high morbidity and mortality of cystic fibrosis patients and of patients with nosocomial infections. Here, we present a method based on delivery of the tightly regulated rhamnose-inducible promoter P(rhaB) for identifying essential genes and operons in Burkholderia cenocepacia. We demonstrate that different levels of gene expression can be achieved by using two vectors that deliver P(rhaB) at two different distances from the site of insertion. One of these vectors places P(rhaB) at the site of transposon insertion, while the other incorporates the enhanced green fluorescent protein gene (e-gfp) downstream from P(rhaB). This system allows us to identify essential genes and operons in B. cenocepacia and provides a new tool for systematically identifying and functionally characterizing essential genes at the genomic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhi causes typhoid fever in humans. Central to the pathogenicity of serovar Typhi is its capacity to invade intestinal epithelial cells. The role of lipopolysaccharide (LPS) in the invasion process of serovar Typhi is unclear. In this work, we constructed a series of mutants with defined deletions in genes for the synthesis and polymerization of the O antigen (wbaP, wzy, and wzz) and the assembly of the outer core (waaK, waaJ, waaI, waaB, and waaG). The abilities of each mutant to associate with and enter HEp-2 cells and the importance of the O antigen in serum resistance of serovar Typhi were investigated. We demonstrate here that the presence and proper chain length distribution of the O-antigen polysaccharide are essential for serum resistance but not for invasion of epithelial cells. In contrast, the outer core oligosaccharide structure is required for serovar Typhi internalization in HEp-2 cells. We also show that the outer core terminal glucose residue (Glc II) is necessary for efficient entry of serovar Typhi into epithelial cells. The Glc I residue, when it becomes terminal due to a polar insertion in the waaB gene affecting the assembly of the remaining outer core residues, can partially substitute for Glc II to mediate bacterial entry into epithelial cells. Therefore, we conclude that a terminal glucose in the LPS core is a critical residue for bacterial recognition and internalization by epithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymyxin B-sensitive mutants in Burkholderia vietnamiensis (Burkholderia cepacia genomovar V) were generated with a mini-Tn5 encoding tetracycline resistance. One of the transposon mutants had an insertion in the norM gene encoding a multi-drug efflux protein. Expression of B. vietnamiensis norM in an Escherichia coli acrAB deletion mutant complemented its norfloxacin hypersensitivity, indicating that the protein functions in drug efflux. However, no effect on antibiotic sensitivity other than sensitivity to polymyxin B was observed in the B. vietnamiensis norM mutant. We demonstrate that increased polymyxin sensitivity in B. vietnamiensis was associated with the presence of tetracycline in the growth medium, a phenotype that was partially suppressed by expression of the norM gene.