961 resultados para INORGANIC HYBRID MATERIALS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate) (PHB) nanocomposites containing environmentally-friendly tungsten disulphide inorganic nanotubes (INTeWS2) have been successfully prepared by a simple solution blending method. The dynamic and isothermal crystallization studies by differential scanning calorimetry (DSC) demonstrated that the INTeWS2 exhibits much more prominent nucleation activity on the crystallization of PHB than specific nucleating agents or other nanoscale fillers. Both crystallization rate and crystallinity significantly increase in the nanocomposites compared to neat PHB. These changes occur without modifying the crystalline structure of PHB in the nanocomposites, as shown by wide-angle X-ray diffraction (WAXS) and infrared/Raman spectroscopy. Other parameters such as the Avrami exponent, the equilibrium melting temperature, global rate constant and the fold surface free energy of PHB chains in the nanocomposites were obtained from the calorimetric data in order to determine the influence of the INTeWS2 filler. The addition of INTeWS2 remarkably influences the energetics and kinetics of nucleation and growth of PHB, reducing the fold surface free energy by up to 20%. Furthermore, these nanocomposites also show an improvement in both tribological and mechanical (hardness and modulus) properties with respect to pure PHB evidenced by friction and nanoindentation tests, which is of important potential interest for industrial and medical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pure and cerium doped sodium bismuth titanate inorganic powders were synthesized by solid state reaction method. The presence of rhombohedral phase was observed in cerium doped NBT compounds. At 1200 ºC, the 5% of cerium doped NBT compound forms single perovskite phase. The samples of x = 0.10 and 0.15 were heat treated to 1350 ºC, the binary phases with cerium and bismuth oxides were observed. The X-ray diffraction, fourier transform infrared spectroscopy, reflectance spectra, differential thermal analysis and thermo gravimetric analysis were used to analyze the various properties of samples. Moreover, the effects of cerium doping and calcining temperature on NBT samples were investigated. In this work we present our recent results on the synthesis and characterization of Ce doped sodium bismuth titanate materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since its invention in the 1950s, semiconductor solar cell technology has evolved in great leaps and bounds. Solar power is now being considered as a serious leading contender for replacing fossil fuel based power generation. This article reviews the evolution and current state, and potential areas of near future research focus, of leading inorganic materials based solar cells, including bulk crystalline, amorphous thin-films, and nanomaterials based solar cells. Bulk crystalline silicon solar cells continue to dominate the solar power market, and continued efforts at device fabrication improvements, and device topology advancements are discussed. III-V compound semiconductor materials on c-Si for solar power generation are also reviewed. Developments in thin-film based solar cells are reviewed, with a focus on amorphous silicon, copper zinc tin sulfide, cadmium telluride, as well as nanostructured Cadmium telluride. Recent developments in the use of nano-materials for solar power generation, including silicon and gallium arsenide nanowires, are also reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesta Tese foram preparados, em solução, filmes híbridos de argila e poliestireno provenientes de copos descartáveis comercializados no mercado brasileiro, com acetato de etila e glicerol. Posteriormente, foi adicionado o Hemi-hidrato de sulfato de cálcio como carga de reforço. Tanto a argila quanto o glicerol, assim como o hemihidrato de sulfato de cálcio, foram utilizados nos percentuais relativos à massa do poliestireno fragmentado correspondendo a 1%,2%, 3%,4%, 5% e 7%. Dos filmes, nos percentuais 3, 4, 5 e 7, exclui-se o percentual de 4% e os demais foram fragmentados e submetidos a extrusão, com resfriamento natural, à seco, produzindo-se grãos com os quais foi avaliado o índice de fluidez e injetados para a moldagem de corpos de prova rígidos. O desempenho dos corpos rígidos, foi comparado com os resultados do HIPS 484, e o GPPS comercializados no mercado brasileiro. Os filmes foram caracterizados por difração de raios X, microscopia eletrônica de varredura (MEV), calorimetria exploratória diferencial (DSC), além dos testes de resistência à tração, fluorescência de raios X, EDS e FTIR. Amostra do filme, ultrafino, obtido a partir da solução com o percentual de 5% foi observada ao microscópio ótico e no microscópio eletrônico de transmissão, assim como amostras de corpos rígidos microtomizadas. Nos corpos rígidos, além das análises instrumentais citadas, foram avaliadas a resistência à flexão, modulo de flexão, resistência à tração, alongamento e resistência ao impacto Izod. O desempenho sob chama foi avaliado em amostras de filme e também do corpo rígido. Resultados do DRX, e da MET foram coerentes com a bibliografia para nanocompósitos argila-polímero e, associado às respostas dos demais ensaios, indicaram um material de boa qualidade morfológica e boas propriedades mecânicas comparadas ao HIPS 484 e ao GPPS. Sob a chama o material produzido apresentou maior resistência à queima avaliado pela quantidade aparente de material residual para um mesmo tempo sob fogo. Constatou-se, também, uma boa dispersão das cargas na matriz polimérica, assim como uma adequada interação entre os elementos orgânicos e inorgânicos do material, a delaminação parcial da argila e quebra da estrutura do hemi-hidrato. Isto resultou em um bom desempenho mecânico e térmico do compósito que pode ser atribuído, tanto a uma forte influência dos íons metálicos presentes nas cargas inorgânicas, quanto às adições presentes na formulação dos copos descartáveis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites consisting of polyaniline (PANI) coatings inside the microporosity of an activated carbon fibre (ACF) were prepared by electrochemical and chemical methods. Electrochemical characterization of both composites points out that the electrodes with polyaniline show a higher capacitance than the pristine porous carbon electrode. These materials have been used to develop an asymmetric capacitor based on activated carbon (AC) as negative electrode and an ACF–PANI composite as positive electrode in H2SO4 solution as electrolyte. The presence of a thin layer of polyaniline inside the porosity of the activated carbon fibres avoids the oxidation of the carbon material and the oxygen evolution reaction is produced at more positive potentials. This capacitor was tested in a maximum cell voltage of 1.6 V and exhibited high energy densities, calculated for the unpackaged active materials, with values of 20 W h kg−1 and power densities of 2.1 kW kg−1 with excellent cycle lifetime (90% during the first 1000 cycles) and high coulombic efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To report the successful outcome obtained after fitting a new hybrid contact lens in a cornea with an area of donor-host misalignment and significant levels of irregular astigmatism after penetrating keratoplasty (PKP). Materials and methods: A 41-year-old female with bilateral asymmetric keratoconus underwent PKP in her left eye due to the advanced status of the disease. One year after surgery, the patient referred a poor visual acuity and quality in this eye. The fitting of different types of rigid gas permeable contact lenses was performed, but with an unsuccessful outcome due to contact lens stability problems and uncomfortable wear. Scheimpflug imaging evaluation revealed that a donor-host misalignment was present at the nasal area. Contact lens fitting with a reverse geometry hybrid contact lens (Clearkone, SynergEyes Carlsbad) was then fitted. Visual, refractive, and ocular aberrometric outcomes were evaluated during a 1-year period after the fitting. Results: Uncorrected distance visual acuity improved from a prefitting value of 20/200 to a best corrected postfitting value of 20/20. Prefitting manifest refraction was +5.00 sphere and -5.50 cylinder at 75°, with a corrected distance visual acuity of 20/30. Higher order root mean square (RMS) for a 5 mm pupil changed from a prefitting value of 6.83 µm to a postfitting value of 1.57 µm (5 mm pupil). The contact lens wearing was referred as comfortable, with no anterior segment alterations. Conclusion: The SynergEyes Clearkone contact lens seems to be another potentially useful option for the visual rehabilitation after PKP, especially in cases of donor-host misalignment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Rh diamine complex [Rh(COD)NH2(CH2)2NH(CH2)3Si(OCH3)3] BF4 was heterogenized by covalent bonding on two carbon xerogels and on carbon nanofibers, with the objective of preparing hydrogenation hybrid catalysts. Gas adsorption, SEM, TEM, DTP, ICP-OES and XPS were used for characterization. The results indicate that the active molecule is mainly located in supermicropores and produces microporosity blockage. The hybrid catalysts are more active than the homogeneous complex, but the Rh complex is partially reduced upon reaction. This modification is related to the nature of the support, which also shows effects in the stabilization against sintering of the Rh particles formed. The support porosity is a key factor in the selectivity differences between the catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hierarchical porous carbon materials prepared by the direct carbonization of lignin/zeolite mixtures and the subsequent basic etching of the inorganic template have been electrochemically characterized in acidic media. These lignin-based templated carbons have interesting surface chemistry features, such as a variety of surface oxygen groups and also pyridone and pyridinic groups, which results in a high capacitance enhancement compared to petroleum-pitch-based carbons obtained by the same procedure. Furthermore, they are easily electro-oxidized in a sulfuric acid electrolyte under positive polarization to produce a large amount of surface oxygen groups that boosts the pseudocapacitance. The lignin-based templated carbons showed a specific capacitance as high as 250 F g−1 at 50 mA g−1, with a capacitance retention of 50 % and volumetric capacitance of 75 F cm−3 at current densities higher than 20 A g−1 thanks to their suitable porous texture. These results indicate the potential use of inexpensive biomass byproducts, such as lignin, as carbon precursors in the production of hierarchical carbon materials for electrodes in electrochemical capacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of two different materials as electrodes allows the construction of asymmetric and hybrid capacitors cells with enhanced energy and power density. This approach is especially well-suited for overcoming the limitations of pseudocapacitive materials that provide a huge capacitance boost, but in a limited potential window. In this work, we introduce the concepts and protocols that are required for a successful design of such systems, which is illustrated by the construction of an asymmetric hybrid cell where a zeolite-templated carbon and an ultraporous activated carbon have been combined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several motivations have prompted the scientific community towards the application of hybrid magnetic carbon nanocomposites in catalytic wet peroxide oxidation (CWPO) processes. The most relevant literature on this topic is reviewed, with a special focus on the synergies that can arise from the combination of highly active and magnetically separable iron species with the easily tuned properties of carbon-based materials. These are mainly ascribed to increased adsorptive interactions, to good structural stability and low leaching levels of the metal species, and to increased regeneration and dispersion of the active sites, which are promoted by the presence of the carbon-based materials in the composites. The most significant features of carbon materials that may be further explored in the design of improved hybrid magnetic catalysts are also addressed, taking into consideration the experimental knowledge gathered by the authors in their studies and development of carbon-based catalysts for CWPO. The presence of stable metal impurities, basic active sites and sulphur-containing functionalities, as well as high specific surface area, adequate porous texture, adsorptive interactions and structural defects, are shown to increase the activity of carbon materials when applied in CWPO, while the presence of acidic oxygen-containing functionalities has the opposite effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elevated regions in the central parts of ocean basins are excellent for study of accumulation of eolian material. The mass-accumulation rates of this sediment component appear to reflect changes in the influx of volcanic materials through the Early Cretaceous to Recent history of Deep Sea Drilling Project Site 463, on the Mid-Pacific Mountains. Four distinct episodes of eolian accumulation occurred during the Cretaceous: two periods of moderate accumulation, averaging about 0.2 to 0.3 g/cm**2/10**3 yr, 67 to 70.5 m.y. ago and 91 to 108 m.y. ago; a period of low accumulation, approximately 0.03 g/cm**2/10**3 yr, 70.5 to 90 m.y. ago; and a period of high accumulation, about 0.9 g/cm**2/10**3 yr, 109 to 117 m.y. ago (bottom of the hole). Much of the Cenozoic section is missing from Site 463. Upper Miocene to Recent sediments record an upward increase in accumulation rates, from less than 0.01 to about 0.044 g/cm**2/10**3 yr. The late Pliocene-Pleistocene peak may reflect the change to glacial-wind regimes, as well as an increase in volcanic source materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isothermal-isobaric (NPT) molecular dynamics simulation has been performed to investigate the layering behavior and structure of nanoconfined quaternary alkylammoniums in organoclays. This work is focused on systems consisting of two clay layers and a number of alkylammoniums, and involves the use of modified Dreiding force field. The simulated basal spacings of organoclays agree satisfactorily with the experimental results in the literature. The atomic density profiles in the direction normal to the clay surface indicate that the alkyl chains within the interlayer space of montmorillonite exhibit an obvious layering behavior. The headgroups of long alkyl chains are distributed within two layers close to the clay surface, whereas the distributions of methyl and methylene groups are strongly dependent on the alkyl chain length and clay layer charge. Monolayer, bilayer, and pseudo-trilayer structures are found in organoclays modified with single long alkyl chains, which are identical to the structural models based on the measured basal spacings. A pseudo-quadrilayer structure, for the first time to our knowledge, is also identified in organoclays with double long alkyl chains. In the mixture structure of paraffin-type and multilayer, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer in pseudo-trilayer as well as next nearest layer in pseudo-quadrilayer.