919 resultados para INHIBITING APOPTOSIS
Resumo:
Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.
Resumo:
Apoptosis induced in myeloid leukemic cells by wild-type p53 was suppressed by different cleavage-site directed protease inhibitors, which inhibit interleukin-1 beta-converting enzyme-like, granzyme B and cathepsins B and L proteases. Apoptosis was also suppressed by the serine and cysteine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone (TPCK) [corrected], but not by other serine or cysteine protease inhibitors including N alpha-p-tosyl-L-lysine chloromethylketone (TLCK), E64, pepstatin A, or chymostatin. Protease inhibitors suppressed induction of apoptosis by gamma-irradiation and cycloheximide but not by doxorubicin, vincristine, or withdrawal of interleukin 3 from interleukin 3-dependent 32D non-malignant myeloid cells. Induction of apoptosis in normal thymocytes by gamma-irradiation or dexamethasone was also suppressed by the cleavage-site directed protease inhibitors, but in contrast to the myeloid leukemic cells apoptosis in thymocytes was suppressed by TLCK but not by TPCK. The results indicate that (i) inhibitors of interleukin-1 beta-converting enzyme-like proteases and some other protease inhibitors suppressed induction of apoptosis by wild-type p53 and certain p53-independent pathways of apoptosis; (ii) the protease inhibitors together with the cytokines interleukin 6 and interferon-gamma or the antioxidant butylated hydroxyanisole gave a cooperative protection against apoptosis; (iii) these protease inhibitors did not suppress induction of apoptosis by some cytotoxic agents or by viability-factor withdrawal from 32D cells, whereas these pathways of apoptosis were suppressed by cytokines; (iv) there are cell type differences in the proteases involved in apoptosis; and (v) there are multiple pathways leading to apoptosis that can be selectively induced and suppressed by different agents.
Resumo:
Reactive oxygen species (ROS) have been implicated as potential modulators of apoptosis. Conversely, experiments under hypoxic conditions have suggested that apoptosis could occur in the absence of ROS. We sought to determine whether a central modulator of apoptosis, p53, regulates the levels of intracellular ROS and whether a rise in ROS levels is required for the induction of p53-dependent apoptosis. We transiently overexpressed wild-type p53, using adenoviral gene transfer, and identified cell types that were sensitive or resistant to p53-mediated apoptosis. Cells sensitive to p53-mediated apoptosis produced ROS concomitantly with p53 overexpression, whereas cells resistant to p53 failed to produce ROS. In sensitive cells, both ROS production and apoptosis were inhibited by antioxidant treatment. These results suggest that p53 acts to regulate the intracellular redox state and induces apoptosis by a pathway that is dependent on ROS production.
Resumo:
With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overexpression of this gene. By contrast, FADD's ability to induce cell death does not depend on crosslinking. Furthermore, RIP and FADD appear to activate different apoptotic pathways since RIP is able to induce cell death in a cell line that is resistant to the apoptotic effects of Fas, tumor necrosis factor, and FADD. Consistent with this, a dominant negative mutant of FADD, lacking its N-terminal domain, blocks apoptosis induced by RIP but not by FADD. Since both pathways are blocked by CrmA, the interleukin 1 beta converting enzyme family protease inhibitor, these results suggest that FADD and RIP can act along separable pathways that nonetheless converge on a member of the interleukin 1 beta converting enzyme family of cysteine proteases.
Resumo:
Mutations of the Bruton's tyrosine kinase (btk) gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immune deficiency (Xid) in mice. To establish the BTK role in B-cell activation we examined the responses of wild-type and Xid B cells to stimulation through surface IgM and CD40, the transducers of thymus independent-type 2 and thymus-dependent activation, respectively. Wild-type BTK was necessary for proliferation induced by soluble anti-IgM (a prototype for thymus independent-type 2 antigen), but not for responses to soluble CD40 ligand (CD40L, the B-cell activating ligand expressed on T-helper cells). In the absence of wild-type BTK, B cells underwent apoptotic death after stimulation with anti-IgM. In the presence of wild-type but not mutated BTK, anti-IgM stimulation reduced apoptotic cell death. In contrast, CD40L increased viability of both wild-type and Xid B cells. Importantly, viability after stimulation correlated with the induced expression of bcl-XL. In fresh ex vivo small resting B cells from wild-type mice there was only barely detectable bcl-XL protein, but there was more in the larger, low-density ("activated") splenic B cells and peritoneal B cells. In vitro Bcl-XL induction following ligation of sIgM-required BTK, was cyclosporin A (CsA)-sensitive and dependent on extracellular Ca2+. CD40-mediated induction of bcl-x required neither wild-type BTK nor extracellular Ca2+ and was insensitive to CsA. These results indicate that BTK lies upstream of bcl-XL in the sIgM but not the CD40 activation pathway. bcl-XL is the first induced protein to be placed downstream of BTK.
Resumo:
Cytotoxic T lymphocytes (CTL) can induce apoptosis through a granzyme B-based killing mechanism. Here we show that in cells undergoing apoptosis by granzyme B, both p45 pro-interleukin 1 beta converting enzyme (ICE) and pro-CPP32 are processed. Using ICE deficient (ICE -/-) mice, embryonic fibroblasts exhibit high levels of resistance to apoptosis by granzyme B or granzyme 3, while B lymphoblasts are granzyme B-resistant, thus identifying an ICE-dependent apoptotic pathway that is activated by CTL granzymes. In contrast, an alternative ICE-independent pathway must also be activated as ICE -/- thymocytes remain susceptible to apoptosis by both granzymes. In ICE -/- B cells or HeLa cells transfected with mutant inactive ICE or Ich-1S that exhibit resistance to granzyme B, CPP32 is processed to p17 and poly(ADP-ribose) polymerase is cleaved indicating that this protease although activated was not associated with an apoptotic nuclear phenotype. Using the peptide inhibitor Ac-DEVD-CHO, apoptosis as well as p45 ICE hydrolysis are suppressed in HeLa cells, suggesting that a CPP32-like protease is upstream of ICE. In contrast, p34cdc2 kinase, which is required for granzyme B-induced apoptosis, remains inactive in ICE -/- B cells indicating it is downstream of ICE. We conclude that granzyme B activates an ICE-dependent cell death pathway in some cell types and requires a CPP32-like Ac-DEVD-CHO inhibitable protease acting upstream to initiate apoptosis.
Resumo:
Peripheral blood mononuclear cells and lymphoid tissues from HIV-infected individuals display high levels of "tissue" transglutaminase (tTG) with respect to seronegative persons. In asymptomatic individuals, > 80% of the circulating CD4+ T cells synthesize tTG protein and the number of these cells matches the level of apoptosis detected in the peripheral blood mononuclear cells from the same patients. In HIV-infected lymph nodes tTG protein is localized in large number of cells (macrophages, follicular dendritic cells, and endothelial cells), showing distinctive morphological and biochemical features of apoptosis as well as in lymphocytes and syncytia. These findings demonstrate that during the course of HIV infection, high levels of apoptosis also occur in the accessory cells of lymphoid organs. The increased concentration of epsilon(gamma-glutamyl)lysine isodipeptide, the degradation product of tTG cross-linked proteins, observed in the blood of HIV-infected individuals demonstrates that the enzyme accumulated in the dying cells actively cross-links intracellular proteins. The enhanced levels of epsilon(gamma-glutamyl)lysine in the blood parallels the progression of HIV disease, suggesting that the isodipeptide determination might be a useful method to monitor the in vivo rate of apoptosis.
Resumo:
We have previously shown that the expression of an unedited atp9 chimeric gene correlated with male-sterile phenotype in transgenic tobacco plant. To study the relationship between the expression of chimeric gene and the male-sterile trait, hemizygous and homozygous transgenic tobacco lines expressing the antisense atp9 RNA were constructed. The antisense producing plants were crossed with a homozygous male-sterile line, and the F1 progeny was analyzed. The offspring from crosses between homozygous lines produced only male-fertile plants, suggesting that the expression antisense atp9 RNA abolishes the effect of the unedited chimeric gene. In fact, the plants restored to male fertility showed a dramatic reduction of the unedited atp9 transcript levels, resulting in normal flower development and seed production. These results support our previous observation that the expression of unedited atp9 gene can induce male sterility.
Resumo:
Initiation of minus (-) strand DNA synthesis was examined on templates containing R, U5, and primer-binding site regions of the human immunodeficiency virus type 1 (HIV-1), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV) genomic RNA. DNA synthesis was initiated from (i) an oligoribonucleotide complementary to the primer-binding sites, (ii) synthetic tRNA(3Lys), and (iii) natural tRNA(3Lys), by the reverse transcriptases of HIV-1, FIV, EIAV, simian immunodeficiency virus, HIV type 2 (HIV-2), Moloney murine leukemia virus, and avian myeloblastosis virus. All enzymes used an oligonucleotide on wild-type HIV-1 RNA, whereas only a limited number initiated (-) strand DNA synthesis from either tRNA(3Lys). In contrast, all enzymes supported efficient tRNA(3Lys)-primed (-) strand DNA synthesis on the genomes of FIV and EIAV. This may be in part attributable to the observation that the U5-inverted repeat stem-loop of the EIAV and FIV genomes lacks an A-rich loop shown with HIV-1 to interact with the U-rich tRNA anticodon loop. Deletion of this loop in HIV-1 RNA, or disrupting a critical loop-loop complex by tRNA(3Lys) extended by 9 nt, restored synthesis of HIV-1 (-) strand DNA from primer tRNA(3Lys) by all enzymes. Thus, divergent evolution of lentiviruses may have resulted in different mechanisms to use the same host tRNA for initiation of reverse transcription.
Resumo:
Expression of the human immunodeficiency virus type 1 (HIV) protease in cultured cells leads to apoptosis, preceded by cleavage of bcl-2, a key negative regulator of cell death. In contrast, a high level of bcl-2 protects cells in vitro and in vivo from the viral protease and prevents cell death following HIV infection of human lymphocytes, while reducing the yields of viral structural proteins, infectivity, and tumor necrosis factor alpha. We present a model for HIV replication in which the viral protease depletes the infected cells of bcl-2, leading to oxidative stress-dependent activation of NF kappa B, a cellular factor required for HIV transcription, and ultimately to cell death. Purified bcl-2 is cleaved by HIV protease between phenylalanine 112 and alanine 113. The results suggest a new option for HIV gene therapy; bcl-2 muteins that have noncleavable alterations surrounding the HIV protease cleavage site.
Resumo:
Cells infected with herpes simplex virus 1 (HSV-1) undergo productive or latent infection without exhibiting features characteristic of apoptosis. In this report, we show that HSV-1 induces apoptosis but has evolved a function that blocks apoptosis induced by infection as well as by other means. Specifically, (i) Vero cells infected with a HSV-1 mutant deleted in the regulatory gene alpha 4 (that encodes repressor and transactivating functions), but not those infected with wild-type HSV-1(F), exhibit cytoplasmic blebbing, chromatin condensation, and fragmented DNA detected as a ladder in agarose gels or by labeling free DNA ends with terminal transferase; (ii) Vero cells infected with wild-type HSV-1(F) or cells expressing the alpha 4 gene and infected with the alpha 4- virus did not exhibit apoptosis; (iii) fragmentation of cellular DNA was observed in Vero cells that were mock-infected or infected with the alpha 4- virus and maintained at 39.5 degrees C, but not in cells infected with wild-type virus and maintained at the same temperature. Wild-type strains of HSV-1 with limited extrahuman passages, such as HSV-1 (F), carry a temperature-sensitive lesion in the alpha 4 gene and at 39.5 degrees C only alpha genes are expressed. These results indicate that the product of the alpha 4 gene is able to suppress apoptosis induced by the virus as well by other means.
Resumo:
Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.
New approach for inhibiting Rev function and HIV-1 production using the influenza virus NS1 protein.
Resumo:
The Rev protein of HIV-1, which facilitates the nuclear export of HIV-1 pre-mRNAs, has been a target for antiviral therapy. Here we describe a new strategy for inhibiting Rev function and HIV-1 replication. In contrast to previous approaches, we use a wild-type rather than a mutant Rev protein and covalently link this Rev sequence to the NS1 protein of influenza A virus, a protein that inhibits the nuclear export of mRNAs. The NS1 protein contains an RNA-binding domain mutation (RM), so that the only functional RNA-binding domain in the chimeric protein (NS1RM-Rev) is in the Rev protein sequence. In the presence of the NS1RM-Rev chimeric protein, HIV-1 pre-mRNAs were retained in, rather than exported from, the nucleus. In addition, this chimeric protein effectively inhibited Rev function in trans in transfection experiments and effectively inhibited the production of HIV-1 in tissue culture cells transfected with an infectious molecular clone of HIV-1 DNA. The inhibitory activities of the NS1RM-Rev chimera were at least equivalent to those of the Rev M10 mutant protein, which has been considered to be the prototype trans inhibitor of Rev function and is currently in phase I clinical trials for the treatment of AIDS patients. We discuss (i) the potential for increasing the inhibitory activity of NS1-Rev chimeras against HIV-1 and (ii) the need for additional studies to evaluate these chimeras for the treatment of AIDS.
Resumo:
UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirement for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-alpha- and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis.