929 resultados para ICGS (Electronic computer system)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Issues of wear and tribology are increasingly important in computer hard drives as slider flying heights are becoming lower and disk protective coatings thinner to minimise spacing loss and allow higher areal density. Friction, stiction and wear between the slider and disk in a hard drive were studied using Accelerated Friction Test (AFT) apparatus. Contact Start Stop (CSS) and constant speed drag tests were performed using commercial rigid disks and two different air bearing slider types. Friction and stiction were captured during testing by a set of strain gauges. System parameters were varied to investigate their effect on tribology at the head/disk interface. Chosen parameters were disk spinning velocity, slider fly height, temperature, humidity and intercycle pause. The effect of different disk texturing methods was also studied. Models were proposed to explain the influence of these parameters on tribology. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were used to study head and disk topography at various test stages and to provide physical parameters to verify the models. X-ray Photoelectron Spectroscopy (XPS) was employed to identify surface composition and determine if any chemical changes had occurred as a result of testing. The parameters most likely to influence the interface were identified for both CSS and drag testing. Neural Network modelling was used to substantiate results. Topographical AFM scans of disk and slider were exported numerically to file and explored extensively. Techniques were developed which improved line and area analysis. A method for detecting surface contacts was also deduced, results supported and explained observed AFT behaviour. Finally surfaces were computer generated to simulate real disk scans, this allowed contact analysis of many types of surface to be performed. Conclusions were drawn about what disk characteristics most affected contacts and hence friction, stiction and wear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Residual current-operated circuit-breakers (RCCBs) have proved useful devices for the protection of both human beings against ventricular fibrillation and installations against fire. Although they work well with sinusoidal waveforms, there is little published information on their characteristics. Due to shunt connected non-linear devices, not the least of which is the use of power electronic equipment, the supply is distorted. Consequently, RCCBs as well as other protection relays are subject to non-sinusoidal current waveforms. Recent studies showed that RCCBs are greatly affected by harmonics, however the reasons for this are not clear. A literature search has also shown that there are inconsistencies in the analysis of the effect of harmonics on protection relays. In this work, the way RCCBs operate is examined, then a model is built with the aim of assessing the effect of non-sinusoidal current on RCCBs. Tests are then carried out on a number of RCCBs and these, when compared with the results from the model showed good correlation. In addition, the model also enables us to explain the RCCBs characteristics for pure sinusoidal current. In the model developed, various parameters are evaluated but special attention is paid to the instantaneous value of the current and the tripping mechanism movement. A similar assessment method is then used to assess the effect of harmonics on two types of protection relay, the electromechanical instantaneous relay and time overcurrent relay. A model is built for each of them which is then simulated on the computer. Tests results compare well with the simulation results, and thus the model developed can be used to explain the relays behaviour in a harmonics environment. The author's models, analysis and tests show that RCCBs and protection relays are affected by harmonics in a way determined by the waveform and the relay constants. The method developed provides a useful tool and the basic methodology to analyse the behaviour of RCCBs and protection relays in a harmonics environment. These results have many implications, especially the way RCCBs and relays should be tested if harmonics are taken into account.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computer-Based Learning systems of one sort or another have been in existence for almost 20 years, but they have yet to achieve real credibility within Commerce, Industry or Education. A variety of reasons could be postulated for this, typically: - cost - complexity - inefficiency - inflexibility - tedium Obviously different systems deserve different levels and types of criticism, but it still remains true that Computer-Based Learning (CBL) is falling significantly short of its potential. Experience of a small, but highly successful CBL system within a large, geographically distributed industry (the National Coal Board) prompted an investigation into currently available packages, the original intention being to purchase the most suitable software and run it on existing computer hardware, alongside existing software systems. It became apparent that none of the available CBL packages were suitable, and a decision was taken to develop an in-house Computer-Assisted Instruction system according to the following criteria: - cheap to run; - easy to author course material; - easy to use; - requires no computing knowledge to use (as either an author or student) ; - efficient in the use of computer resources; - has a comprehensive range of facilities at all levels. This thesis describes the initial investigation, resultant observations and the design, development and implementation of the SCHOOL system. One of the principal characteristics c£ SCHOOL is that it uses a hierarchical database structure for the storage of course material - thereby providing inherently a great deal of the power, flexibility and efficiency originally required. Trials using the SCHOOL system on IBM 303X series equipment are also detailed, along with proposed and current development work on what is essentially an operational CBL system within a large-scale Industrial environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computer integrated manufacture has brought about great advances in manufacturing technology and its recognition is world wide. Cold roll forming of thin-walled sections, and in particular the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is but one such area where computer integrated manufacture can make a positive contribution. The work reported in this thesis, concerned with the development of an integrated manufacturing system for assisting the design and manufacture of form-rolls, was undertaken in collaboration with a leading manufacturer of thin-walled sections. A suit of computer programs, written in FORTRAN 77, have been developed to provide computer aids for every aspect of work in form-roll design and manufacture including cost estimation and stock control aids. The first phase of the development programme dealt with the establishment of CAD facilities for form-roll design, comprising the design of the finished section, the flower pattern, the roll design and the interactive roll editor program. Concerning the CAM facilities, dealt with in the second phase, an expert system roll machining processor and a general post-processor have been developed for considering the roll geometry and automatically generating NC tape programs for any required CNC lathe system. These programs have been successfully implemented, as an integrated manufacturing software system, on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of the integrated system has been found beneficial in all aspects of form-roll design and manufacture. Design and manufacturing lead times have been reduced by several weeks, quality has improved considerably and productivity has increased. The work has also demonstrated the promising nature of the expert systems approach to computer integrated manufacture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study on heat pump thermodynamic characteristics has been made in the laboratory on a specially designed and instrumented air to water heat pump system. The design, using refrigerant R12, was based on the requirement to produce domestic hot water at a temperature of about 50 °C and was assembled in the laboratory. All the experimental data were fed to a microcomputer and stored on disk automatically from appropriate transducers via amplifier and 16 channel analogue to digital converters. The measurements taken were R12 pressures and temperatures, water and R12 mass flow rates, air speed, fan and compressor input powers, water and air inlet and outlet temperatures, wet and dry bulb temperatures. The time interval between the observations could be varied. The results showed, as expected, that the COP was higher at higher air inlet temperatures and at lower hot water output temperatures. The optimum air speed was found to be at a speed when the fan input power was about 4% of the condenser heat output. It was also found that the hot water can be produced at a temperature higher than the appropriate R12 condensing temperature corresponding to condensing pressure. This was achieved by condenser design to take advantage of discharge superheat and by further heating the water using heat recovery from the compressor. Of the input power to the compressor, typically about 85% was transferred to the refrigerant, 50 % by the compression work and 35% due to the heating of the refrigerant by the cylinder wall, and the remaining 15% (of the input power) was rejected to the cooling medium. The evaporator effectiveness was found to be about 75% and sensitive to the air speed. Using the data collected, a steady state computer model was developed. For given input conditions s air inlet temperature, air speed, the degree of suction superheat , water inlet and outlet temperatures; the model is capable of predicting the refrigerant cycle, compressor efficiency, evaporator effectiveness, condenser water flow rate and system Cop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT