936 resultados para Human engineering.
Resumo:
The objective of this paper is to take a first step in developing a theoretical framework describing the role of HRM in successful CI, based on the current literature from both fields. To this end, elements from the CI Maturity Model and a framework depicting the role of HRM in innovation serve as a foundation for examining how specific bundles of HRM practices utilised during different phases of the CI implementation process may contribute to sustained organisational and enhanced operational performance. The primary contribution of this paper is theoretical; however, the framework has practical value in that it suggests important relationships between HRM practices and behaviours necessary for successful CI. A preliminary test of the framework in an empirical setting is summarised at the conclusion of this paper, where a number of possible research avenues are also suggested.
Resumo:
The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.
Resumo:
The purpose of this chapter is to describe the use of caricatured contrasting scenarios (Bødker, 2000) and how they can be used to consider potential designs for disruptive technologies. The disruptive technology in this case is Automatic Speech Recognition (ASR) software in workplace settings. The particular workplace is the Magistrates Court of the Australian Capital Territory.----- Caricatured contrasting scenarios are ideally suited to exploring how ASR might be implemented in a particular setting because they allow potential implementations to be “sketched” quickly and with little effort. This sketching of potential interactions and the emphasis of both positive and negative outcomes allows the benefits and pitfalls of design decisions to become apparent.----- A brief description of the Court is given, describing the reasons for choosing the Court for this case study. The work of the Court is framed as taking place in two modes: Front of house, where the courtroom itself is, and backstage, where documents are processed and the business of the court is recorded and encoded into various systems.----- Caricatured contrasting scenarios describing the introduction of ASR to the front of house are presented and then analysed. These scenarios show that the introduction of ASR to the court would be highly problematic.----- The final section describes how ASR could be re-imagined in order to make it useful for the court. A final scenario is presented that describes how this re-imagined ASR could be integrated into both the front of house and backstage of the court in a way that could strengthen both processes.
What are students' understandings of how digital tools contribute to learning in design disciplines?
Resumo:
Building Information Modelling (BIM) is evolving in the Construction Industry as a successor to CAD. CAD is mostly a technical tool that conforms to existing industry practices, however BIM has the capacity to revolutionise industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team, facilitating collaboration and allowing experimentation in design. Exposing design students to this technology through their formal studies allows them to engage with cutting edge industry practices and to help shape the industry upon their graduation. Since this technology is relatively new to the construction industry, there are no accepted models for how to “teach” BIM effectively at university level. Developing learning models to enable students to make the most out of their learning with BIM presents significant challenges to those teaching in the field of design. To date there are also no studies of students experiences of using this technology. This research reports on the introduction of Building Information Modeling (BIM) software into a second year Bachelor of Design course. This software has the potential to change industry standards through its ability to revolutionise the work practices of those involved in large scale design projects. Students’ understandings and experiences of using the software in order to complete design projects as part of their assessment are reported here. In depth semi-structured interviews with 6 students revealed that students had views that ranged from novice to sophisticate about the software. They had variations in understanding of how the software could be used to complete course requirements, to assist with the design process and in the workplace. They had engaged in limited exploration of the collaborative potential of the software as a design tool. Their understanding of the significance of BIM for the workplace was also variable. The results indicate that students are beginning to develop an appreciation for how BIM could aid or constrain the work of designers, but that this appreciation is highly varied and likely to be dependent on the students’ previous experiences of working in a design studio environment. Their range of understandings of the significance of the technology is a reflection of their level of development as designers (they are “novice” designers). The results also indicate that there is a need for subjects in later years of the course that allow students to specialise in the area of digital design and to develop more sophisticated views of the role of technology in the design process. There is also a need to capitalise on the collaborative potential inherent in the software in order to realise its capability to streamline some aspects of the design process. As students become more sophisticated designers we should explore their understanding of the role of technology as a design tool in more depth in order to make recommendations for improvements to teaching and learning practice related to BIM and other digital design tools.
Resumo:
In rapidly changing environments, organisations require dynamic capabilities to integrate, build and reconfigure resources and competencies to achieve continuous innovation. Although tangible resources are important to promoting the firm’s ability to act, capabilities fundamentally rest in the knowledge created and accumulated by the firm through human capital, organisational routines, processes, practices and norms. The exploration for new ideas, technologies and knowledge – to one side – and – on the other one – the exploitation of existing and new knowledge is essential for continuous innovation. Firms need to decide how best to allocate their scarce resources for both activities and at the same time build dynamic capabilities to keep up with changing market conditions. This in turn, is influenced by the absorptive capacity of the firm to assimilate knowledge. This paper presents a case study that investigates the sources of knowledge in an engineering firm in Australia, and how it is organised and processed. As information pervades the firm from both internal and external sources, individuals integrate knowledge using both exploration and exploitation approaches. The findings illustrate that absorptive capacity can encourage greater leverage for exploration potential leading to radical innovation; and reconfiguring exploitable knowledge for incremental improvements. This study provides an insight for managers in quest of improving knowledge strategies and continuous innovation. It also makes significant theoretical contributions to the literature through extending the concepts of
Resumo:
This project aims to develop a methodology for designing and conducting a systems engineering analysis to build and fly continuously, day and night, propelled uniquely by solar energy for one week with a 0.25Kg payload consuming 0.5 watt without fuel or pollution. An airplane able to fly autonomously for many days could find many applications. Including coastal or border surveillance, atmospherical and weather research and prediction, environmental, forestry, agricultural, and oceanic monitoring, imaging for the media and real-estate industries, etc. Additional advantages of solar airplanes are their low cost and the simplicity with which they can be launched. For example, in the case of potential forest fire risks during a warm and dry period, swarms of solar airplanes, easily launched with the hand, could efficiently monitor a large surface, reporting rapidly any fire starts. This would allow a fast intervention and thus reduce the cost of such disaster, in terms of human and material losses. At higher dimension, solar HALE platforms are expected to play a major role as communication relays and could replace advantageously satellites in a near future.
Resumo:
Automatic Speech Recognition (ASR) has matured into a technology which is becoming more common in our everyday lives, and is emerging as a necessity to minimise driver distraction when operating in-car systems such as navigation and infotainment. In “noise-free” environments, word recognition performance of these systems has been shown to approach 100%, however this performance degrades rapidly as the level of background noise is increased. Speech enhancement is a popular method for making ASR systems more ro- bust. Single-channel spectral subtraction was originally designed to improve hu- man speech intelligibility and many attempts have been made to optimise this algorithm in terms of signal-based metrics such as maximised Signal-to-Noise Ratio (SNR) or minimised speech distortion. Such metrics are used to assess en- hancement performance for intelligibility not speech recognition, therefore mak- ing them sub-optimal ASR applications. This research investigates two methods for closely coupling subtractive-type enhancement algorithms with ASR: (a) a computationally-efficient Mel-filterbank noise subtraction technique based on likelihood-maximisation (LIMA), and (b) in- troducing phase spectrum information to enable spectral subtraction in the com- plex frequency domain. Likelihood-maximisation uses gradient-descent to optimise parameters of the enhancement algorithm to best fit the acoustic speech model given a word se- quence known a priori. Whilst this technique is shown to improve the ASR word accuracy performance, it is also identified to be particularly sensitive to non-noise mismatches between the training and testing data. Phase information has long been ignored in spectral subtraction as it is deemed to have little effect on human intelligibility. In this work it is shown that phase information is important in obtaining highly accurate estimates of clean speech magnitudes which are typically used in ASR feature extraction. Phase Estimation via Delay Projection is proposed based on the stationarity of sinusoidal signals, and demonstrates the potential to produce improvements in ASR word accuracy in a wide range of SNR. Throughout the dissertation, consideration is given to practical implemen- tation in vehicular environments which resulted in two novel contributions – a LIMA framework which takes advantage of the grounding procedure common to speech dialogue systems, and a resource-saving formulation of frequency-domain spectral subtraction for realisation in field-programmable gate array hardware. The techniques proposed in this dissertation were evaluated using the Aus- tralian English In-Car Speech Corpus which was collected as part of this work. This database is the first of its kind within Australia and captures real in-car speech of 50 native Australian speakers in seven driving conditions common to Australian environments.
Resumo:
A teaching and learning development project is currently under way at Queensland University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.
Resumo:
The Achilles tendon has been seen to exhibit time-dependent conditioning when isometric muscle actions were of a prolonged duration, compared to those involved in dynamic activities, such as walking. Since, the effect of short duration muscle activation associated with dynamic activities is yet to be established, the present study aimed to investigate the effect of incidental walking activity on Achilles tendon diametral strain. Eleven healthy male participants refrained from physical activity in excess of the walking required to carry out necessary daily tasks and wore an activity monitor during the 24 h study period. Achilles tendon diametral strain, 2 cm proximal to the calcaneal insertion, was determined from sagittal sonograms. Baseline sonographic examinations were conducted at ∼08:00 h followed by replicate examinations at 12 and 24 h. Walking activity was measured as either present (1) or absent (0) and a linear weighting function was applied to account for the proximity of walking activity to tendon examination time. Over the course of the day the median (min, max) Achilles tendon diametral strain was −11.4 (4.5, −25.4)%. A statistically significant relationship was evident between walking activity and diametral strain (P < 0.01) and this relationship improved when walking activity was temporally weighted (AIC 131 to 126). The results demonstrate that the short yet repetitive loads generated during activities of daily living, such as walking, are sufficient to induce appreciable time-dependant conditioning of the Achilles tendon. Implications arise for the in vivo measurement of Achilles tendon properties and the rehabilitation of tendinopathy.
Resumo:
In the quest for shorter time-to-market, higher quality and reduced cost, model-driven software development has emerged as a promising approach to software engineering. The central idea is to promote models to first-class citizens in the development process. Starting from a set of very abstract models in the early stage of the development, they are refined into more concrete models and finally, as a last step, into code. As early phases of development focus on different concepts compared to later stages, various modelling languages are employed to most accurately capture the concepts and relations under discussion. In light of this refinement process, translating between modelling languages becomes a time-consuming and error-prone necessity. This is remedied by model transformations providing support for reusing and automating recurring translation efforts. These transformations typically can only be used to translate a source model into a target model, but not vice versa. This poses a problem if the target model is subject to change. In this case the models get out of sync and therefore do not constitute a coherent description of the software system anymore, leading to erroneous results in later stages. This is a serious threat to the promised benefits of quality, cost-saving, and time-to-market. Therefore, providing a means to restore synchronisation after changes to models is crucial if the model-driven vision is to be realised. This process of reflecting changes made to a target model back to the source model is commonly known as Round-Trip Engineering (RTE). While there are a number of approaches to this problem, they impose restrictions on the nature of the model transformation. Typically, in order for a transformation to be reversed, for every change to the target model there must be exactly one change to the source model. While this makes synchronisation relatively “easy”, it is ill-suited for many practically relevant transformations as they do not have this one-to-one character. To overcome these issues and to provide a more general approach to RTE, this thesis puts forward an approach in two stages. First, a formal understanding of model synchronisation on the basis of non-injective transformations (where a number of different source models can correspond to the same target model) is established. Second, detailed techniques are devised that allow the implementation of this understanding of synchronisation. A formal underpinning for these techniques is drawn from abductive logic reasoning, which allows the inference of explanations from an observation in the context of a background theory. As non-injective transformations are the subject of this research, there might be a number of changes to the source model that all equally reflect a certain target model change. To help guide the procedure in finding “good” source changes, model metrics and heuristics are investigated. Combining abductive reasoning with best-first search and a “suitable” heuristic enables efficient computation of a number of “good” source changes. With this procedure Round-Trip Engineering of non-injective transformations can be supported.
Resumo:
This project explored ways in which Adult and Community Education (ACE) could make a greater contribution to the human capital development outcome under the National Reform Agenda (NRA), and increase the number of skilled workers in Australia. Data on current vocational and non-vocational ACE programs was analysed. Strategies to improve ACE were collated for consideration by government authorities and ACE providers. There is much diversity in the perceived role and activities of ACE. Researchers have found it challenging to create a profile that depicts the whole sector, particularly in the absence of much reliable, valid and comparable data on ACE activities and outcomes. However, there is evidence indicative of ACE’s assistance in re-engaging with learning and training, and initiating pathways to further training or employment. The potential for ACE to make a bigger contribution to skilling Australia is recognised by governments across the nation (Senate Employment, Workplace Relations, Small Business and Education Committee, 1997). Yet policy changes to facilitate an increased role of ACE in the skilling process, and resourcing for ACE programs continue to receive less attention. This project explored three research questions: • What does the current profile of the ACE sector look like? • How is ACE contributing to reducing the skills deficit? • How can ACE enhance its contributions to reduce the skills deficit and achieve the human capital development outcome of the National Reform Agenda? The responsiveness
Resumo:
Analytical and computational models of the intervertebral disc (IVD) are commonly employed to enhance understanding of the biomechanics of the human spine and spinal motion segments. The accuracy of these models in predicting physiological behaviour of the spine is intrinsically reliant on the accuracy of the material constitutive representations employed to represent the spinal tissues. There is a paucity of detailed mechanical data describing the material response of the reinforcedground matrix in the anulus fibrosus of the IVD. In the present study, the ‘reinforcedground matrix’ was defined as the matrix with the collagen fibres embedded but not actively bearing axial load, thus incorporating the contribution of the fibre-fibre and fibre-matrix interactions. To determine mechanical parameters for the anulus ground matrix, mechanical tests were carried out on specimens of ovine anulus, under unconfined uniaxial compression, simple shear and biaxial compression. Test specimens of ovine anulus fibrosus were obtained with an adjacent layer of vertebral bone/cartilage on the superior and inferior specimen surface. Specimen geometry was such that there were no continuous collagen fibres coupling the two endplates. Samples were subdivided according to disc region - anterior, lateral and posterior - to determine the regional inhomogeneity in the anulus mechanical response. Specimens were loaded at a strain rate sufficient to avoid fluid outflow from the tissue and typical stress-strain responses under the initial load application and under repeated loading were determined for each of the three loading types. The response of the anulus tissue to the initial and repeated load cycles was significantly different for all load types, except biaxial compression in the anterior anulus. Since the maximum applied strain exceeded the damage strain for the tissue, experimental results for repeated loading reflected the mechanical ability of the tissue to carry load, subsequent to the initiation of damage. To our knowledge, this is the first study to provide experimental data describing the response of the ‘reinforcedground matrix’ to biaxial compression. Additionally, it is novel in defining a study objective to determine the regionally inhomogeneous response of the ‘reinforcedground matrix’ under an extensive range of loading conditions suitable for mechanical characterisation of the tissue. The results presented facilitate the development of more detailed and comprehensive constitutive descriptions for the large strain nonlinear elastic or hyperelastic response of the anulus ground matrix.
Resumo:
This approach to sustainable design explores the possibility of creating an architectural design process which can iteratively produce optimised and sustainable design solutions. Driven by an evolution process based on genetic algorithms, the system allows the designer to “design the building design generator” rather than to “designs the building”. The design concept is abstracted into a digital design schema, which allows transfer of the human creative vision into the rational language of a computer. The schema is then elaborated into the use of genetic algorithms to evolve innovative, performative and sustainable design solutions. The prioritisation of the project’s constraints and the subsequent design solutions synthesised during design generation are expected to resolve most of the major conflicts in the evaluation and optimisation phases. Mosques are used as the example building typology to ground the research activity. The spatial organisations of various mosque typologies are graphically represented by adjacency constraints between spaces. Each configuration is represented by a planar graph which is then translated into a non-orthogonal dual graph and fed into the genetic algorithm system with fixed constraints and expected performance criteria set to govern evolution. The resultant Hierarchical Evolutionary Algorithmic Design System is developed by linking the evaluation process with environmental assessment tools to rank the candidate designs. The proposed system generates the concept, the seed, and the schema, and has environmental performance as one of the main criteria in driving optimisation.
Resumo:
Weber's contribution on Protestant work ethic has stimulated numerous social scientists. However, the question whether a Protestant specific work ethic exists at all is still rarely analysed. Our results indicate that work ethic is influenced by denomination-based religiosity and education.