985 resultados para Hull cell


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität, Fakultät für Naturwissenschaften, Dissertation, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of cell reabsorption in the ovaries of queens in several rates of laying eggs, artificially impeded of laying, and in nurse workers, of Apis mellifera (Linnaeus, 1758), was studied with light (LM) and transmission electron microscopy (TEM). Two types of structures were described and named by analogy with vertebrates ovarian structures, as corpus luteus, when resulting from the reabsorption of the follicular cells after ovulation, and corpus atresicus when resulting from total follicular reabsorption at any oocyte developmental stage. These structures have the same morphological characteristics and physiological signification in both castes. The corpus luteus occurrence indicates ovulation and its number is correspondent to the queen's rates of oviposition. The presence of this structure in nurse workers ovarioles shows that this caste may lay eggs. The incidence of corpus atresicus in queens decay with the increasing of the oviposition indicating that the inhibition of the normal sequence of oocyte maturation in the ovaries is deleterious. Both, corpus luteus and corpus atresicus incidence may be influenced by environmental factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ucides cordatus (Linnaeus, 1763) is a hypo-hyper-regulating mangrove crab possessing gills for respiratory and osmoregulatory processes, separated in anterior and posterior sections. They also have hepatopancreas, which is responsible for digestion and absorption of nutrients and detoxification of toxic metals. Each of these organs has specific cells that are important for in vitro studies in cell biology, ion and toxic metals transport. In order to study and characterize cells from gills and hepatopancreas, both were separated using a Sucrose Gradient (SG) from 10 to 40% and cells in each gradient were characterized using the vital mitochondrial dye DASPEI (2-(4-dimethylaminostyryl)-N- ethylpyridinium iodide) and Trichrome Mallory's stain. Both in 20 and 40% SG for gill cells and 30% SG for hepatopancreatic cells, a greater number of cells were colored with DASPEI, indicating a larger number of mitochondria in these cells. It is concluded that the gill cells present in 20% and 40% SG are Thin cells, responsible for respiratory processes and Ionocytes responsible for ion transport, respectively. For hepatopancreatic cells, the 30% SG is composed of Fibrillar cells that possess larger number of membrane ion and nutrient transporters. Moreover, the transport of toxic metal cadmium (Cd) by isolated hepatopancreatic cells was performed as a way of following cell physiological integrity after cell separation and to study differences in transport among the cells. All hepatopancreatic cells were able to transport Cd. These findings are the first step for further work on isolated cells of these important exchange epithelia of crabs, using a simple separation method and to further develop successful in vitro cell culture in crabs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant cell wall is a strong fibrillar network that gives each cell its stable shape. It is constituted by a network of cellulose microfibrils embedded in a matrix of polysaccharides, such as xyloglucans. To enlarge, cells selectively loosen this network. Moreover, there is a pectin-rich intercellular material, the middle lamella, cementing together the walls of adjacent plant cells. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of enzymes involved in the reorganisation of the cellulose-xyloglucan framework by catalysing cleavage and re-ligation of the xyloglucan chains in the plant cell wall, and are considered cell wall loosening agents. In the laboratory, it has been isolated and characterised a XTH gene, ZmXTH1, from an elongation root cDNA library of maize. To address the cellular function of ZmXTH1, transgenic Arabidopsis thaliana plants over-expressing ZmXTH1 (under the control of the CaMV35S promoter) were generated. The aim of the work performed was therefore the characterisation of these transgenic plants at the ultrastructural level, by transmission electron microscopy (TEM).The detailed cellular phenotype of transgenic plants was investigated by comparing ultra-thin transverse sections of basal stem of 5-weeks old plants of wild type (Col 0) and 35S-ZmXTH1 Arabidopsis plants. Transgenic plants show modifications in the cell walls, particularly a thicker middle lamella layer with respect the wild type plants, supporting the idea that the overexpression of ZmXTH1 could imply a pronounced wall-loosening. In sum, the work carried out reinforces the idea that ZmXTH1 is involved in the cell wall loosening process in maize.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation by BCG and/or cyclophosphamide of sensitization of mice with flagellar fraction (a tubulin-enriched fraction) prevented death of mice challenged with T. cruzi CL strain trypomastigotes recovered from Vero cells. A methodology was ceveloped to assay specific antigens and to determine optimal doses for sensitization and elicitation of DTH in mice. CL strain is predominantly myotropic strain which does not produce important parasitism of mononuclear phagocyte cells; these cells appear to control infection when activated in vivo. Maximum protection was seen in this study when BCG and cyclophosphamide were associated, but protection was observed also when cyclophosphamide, that prevents supressor T cells, was applied 2 days before flagellar fraction sensitization in normal mice. These experiments suggested that the macrophage may have an important role in the early phases of infection particularly when nonspecific stimulation is associated with specific sensitization. A correlation betwen delayed hypersensitivity to parasite antigens and protection was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell surface of trypanosomatids is formed by the plasma membrane and a layer of sub-pellicular microtubules which are connected to the plasma membrane. The plasma membrane is composed by proteins, lipids and carbohydrates which form the glycocalix. In this paper we will review briefly aspects related to the organization of the cell surface of Trypanosoma cruzi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we measured the blastogenic response of lymph node cells from BALB/c mice infected with Leishmania mexicana throughout the course of infection. Results showed that infected mice displayed normal blastogenic responses in the lymph nodes until twenty weeks of infection. Thereafter, there was a gradual suppression. Comparison of the immunoresponsiveness in the spleen and lymph nodes, revealed normal responses in the lymph nodes several weeks after suppression in the spleen had occurred. Suppression of blastogenic responses in the lymph nodes was related to an adherent macrophage-like cell which actively suppressed normal proliferative responses to mitogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T lymphocytes reactive with the product of the Mlsa-allele of the minor lymphocyte stimulating (Mls) locus use a predominant T-cell receptor beta-chain variable gene segment (V beta 6). Such V beta 6-bearing T cells are selectively eliminated in the thymus of Mlsa-bearing mice, consistent with a model in which tolerance to self antigens is achieved by clonal deletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple method for evaluating the binding of concanavalin A (ConA) to human peripheral blood mononuclear cells (PBMC). The binding is evidenced by an immunoenzymic assay using peroxidase-conjugated immunoglobulins of a rabbit anti-ConA serum. Using the method we show that sera from patients with American leishmaniasis do not interfere with binding of ConA to PBMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the last few years, several reports have revealed that cell transplantation can be an effective way to replace lost neurons in the central nervous system (CNS) of patients affected with neurodegenerative diseases. Concerning the retina, the concept that newborn photoreceptors can integrate the retina and restore some visual functions was univocally demonstrated recently in the mouse eye (MacLaren et al. 2006) and remains to be achieved in human. These results pave the way to a standard approach in regenerative medicine aiming to replace lost photoreceptors. With the discovery of stem cells a great hope has appeared towards elaborating protocols to generate adequate cells to restore visual function in different retinal degeneration processes. Retinal stem cells (RSCs) are good candidates to repair the retina and are present throughout the retina development, including adulthood. However, neonatal mouse RSCs derived from the radial glia population have a different potential to proliferate and differentiate in comparison to adult RSCs. Moreover, we observed that adult mouse RSCs, depending on the culture conditions, have a marked tendency to transform, whereas neonatal RSCs show subtle chromosome abnormalities only after extensive expansion. These characteristics should help to identify the optimal cell source and culture conditions for cell transplantation studies. These results will be discussed in light of other studies using RSCs as well as embryonic stem cells. Another important factor to consider is the host environment, which plays a crucial role for cell integration and which was poorly studied in the normal and the diseased retina. Nonetheless, important results were recently generated to reconsider cell transplantation strategy. Perspectives to enhance cell integration by manipulating the environment will also be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1 transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.