930 resultados para High Power Ultrasound
Resumo:
Various types of proton-irradiated lead–bismuth eutectic (LBE) samples from the MEGAPIE prototype spallation target were analyzed concerning their content of 148Gd, 173Lu, and 146Pm by use of α- and γ-spectrometry. A radiochemical separation procedure was developed to isolate the lanthanide fraction and to prepare thin samples for α-ray measurement. The results prove a substantial depletion of these three elements in bulk samples, whereas accumulation on the LBE/steel-interfaces was observed. The amount of material accumulated on surfaces was roughly estimated by relating the values measured on the sample surfaces to the total surface of the inner target walls. The amount of 148Gd, 173Lu, and 146Pm was then quantified by summing up the contributions from every sample type. The results show a reasonable agreement with theoretical predictions. The obtained results are of utmost importance for the evaluation of the performance of high-power spallation targets, especially concerning the residual nuclide production, the physicochemical behavior of the produced radionuclides during operation, and in terms of an intermediate or final disposal.
Resumo:
Linkage and association studies are major analytical tools to search for susceptibility genes for complex diseases. With the availability of large collection of single nucleotide polymorphisms (SNPs) and the rapid progresses for high throughput genotyping technologies, together with the ambitious goals of the International HapMap Project, genetic markers covering the whole genome will be available for genome-wide linkage and association studies. In order not to inflate the type I error rate in performing genome-wide linkage and association studies, multiple adjustment for the significant level for each independent linkage and/or association test is required, and this has led to the suggestion of genome-wide significant cut-off as low as 5 × 10 −7. Almost no linkage and/or association study can meet such a stringent threshold by the standard statistical methods. Developing new statistics with high power is urgently needed to tackle this problem. This dissertation proposes and explores a class of novel test statistics that can be used in both population-based and family-based genetic data by employing a completely new strategy, which uses nonlinear transformation of the sample means to construct test statistics for linkage and association studies. Extensive simulation studies are used to illustrate the properties of the nonlinear test statistics. Power calculations are performed using both analytical and empirical methods. Finally, real data sets are analyzed with the nonlinear test statistics. Results show that the nonlinear test statistics have correct type I error rates, and most of the studied nonlinear test statistics have higher power than the standard chi-square test. This dissertation introduces a new idea to design novel test statistics with high power and might open new ways to mapping susceptibility genes for complex diseases. ^
Resumo:
Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^
Resumo:
Glacier thickness is an important factor in the course of glacier retreat in a warming climate. Thiese study data presents the results (point data) of GPR surveys on 66 Austrian mountain glaciers carried out between 1995 and 2014. The glacier areas range from 0.001 to 18.4 km**2, and their ice thickness has been surveyed with an average density of 36 points/km**2 . The glacier areas and surface elevations refer to the second Austrian glacier inventory (mapped between 1996 and 2002). According to the glacier state recorded in the second glacier inventory, the 64 glaciers cover an area of 223.3±3.6 km**3. Maps of glacier thickness have been calculated by Fischer and Kuhn (2013) with a mean thickness of 50±3 m and contain an glacier volume of 11.9±1.1 km**3. The mean maximum ice thickness is 119±5 m. The ice thickness measurements have been carried out with the transmitter of Narod and Clarke (1994) combined with restively loaded dipole antennas (Wu and King, 1965; Rose and Vickers, 1974) at central wavelengths of 6.5 (30 m antenna length) and 4.0 MHz (50 m antenna length). The signal was recorded trace by trace with an oscilloscope. 168 m/µs as used by Haeberli et al. (1982), Bauder (2001), and Narod and Clarke (1994), the signal velocity in air is assumed to be 300 m/µs. Details on the method can be are found in Fischer and Kuhn (2013), as well as Span et al. (2005) and Fischer et al. (2007).
Resumo:
The study of matter under conditions of high density, pressure, and temperature is a valuable subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser interaction with matter, etc. In all these cases, matter is heated and compressed by strong shocks to high pressures and temperatures, becomes partially or completely ionized via thermal or pressure ionization, and is in the form of dense plasma. The thermodynamics and the hydrodynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of state (EOS) that describes how a material reacts to pressure and how much energy is involved. Therefore, the equation of state often takes the form of pressure and energy as functions of density and temperature. Furthermore, EOS data must be obtained in a timely manner in order to be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably accurate atomic models, is necessary for computing the EOS of a material.
Resumo:
The goal of the European laser fusion project, is to build an engineering facility for repetitive laser operation (HiPER 4a) and later a fusion reactor (HiPER 4b). A key aspect for laser fusion energy is the final optics. At the moment, it is based on silica transmission lenses located 8 m away from the chamber center. Lens lifetime depends on the irradiation conditions. We have used a 48 MJ shock ignition target for calculations. We have studied the thermo-mechanical effects of ions and X-rays on the lenses. Ions lead to lens melting and must therefore be mitigated. On the other hand, X-rays (~1% of the energy) does not produce either a significant temperature rise or detrimental stresses. Finally, we calculated the neutron flux and gamma dose rate on the lenses. Next, based on a simple model we studied the formation of color centers in the sample, which lead to optical absorption. Calculations show that simultaneous neutron and gamma irradiation does not significantly increase the optical absorption during the expected lifetime of the HiPER 4a facility. Under severe conditions (HiPER 4b), operation above 800 K or lens refreshing by thermal annealing treatments seem to assure adequate behavior.
Resumo:
Sunrise is a solar telescope, successfully flown in June 2009 with a long duration balloon from the Swedish Space Corporation Esrange launch site. The design of the thermal control of SUNRISE was quite critical because of the sensitivity to temperature of the optomechanical devices and the electronics. These problems got more complicated due the size and high power dissipation of the system. A detailed thermal mathematical model of SUNRISE was set up to predict temperatures. In this communication the thermal behaviour of SUNRISE during flight is presented. Flight temperatures of some devices are presented and analysed. The measured data have been compared with the predictions given by the thermal mathematical models. The main discrepancies between flight data and the temperatures predicted by the models have been identified. This allows thermal engineers to improve the knowledge of the thermal behaviour of the system for future missions.
Resumo:
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy.
Resumo:
This paper presents a high-power high efficiency PA design method using load pull technique. Harmonic impedance control at the virtual drain is accomplished through the use of tunable pre-matching circuits and modeling of package parasitics. A 0.5 µm GaN high electron mobility transistor (HEMT) is characterized using the method, and loadpull measurements are simulated illustrating the impact of varying 2nd and 3rd harmonic termination. These harmonic terminations are added to satisfy conditions for class-F load pull. The method is verified by design and simulation of a 40-W class-F PA prototype at 1.64 GHz with 76% drain efficiency and 10 dB gain (70% PAE).
Resumo:
This work is focused on building and configuring a measurement test bench for non linear High Power Amplifiers, more precisely those ones based on the Envelope Elimination and Restoration. At first sight the test bench is composed of several arbitrary waveform generators, an oscilloscope, a vector signal generator and a spectrum analyzer all of them controlled remotely. The test bench works automatically, that is why several software control programs have been developed in order to control all this equipment. The control programs have been developed in Matlab/Octave Scripting language and at last chance in a more low level language as C. The signal processing algorithms, taking into account that the time alignment one is the most important, have been developed in Matlab/Octave Scripting too. An improvement of 10dB in the ACPR(Adjacent Channel Power Ratio) has been obtained just by applying the time alignment algorithm developed in this work
Resumo:
HiPER is the European Project for Laser Fusion that has been able to join 26 institutions and signed under formal government agreement by 6 countries inside the ESFRI Program of the European Union (EU). The project is already extended by EU for two years more (until 2013) after its first preparatory phase from 2008. A large work has been developed in different areas to arrive to a design of repetitive operation of Laser Fusion Reactor, and decisions are envisioned in the next phase of Technology Development or Risk Reduction for Engineering or Power Plant facilities (or both). Chamber design has been very much completed for Engineering phase and starting of preliminary options for Reactor Power Plant have been established and review here.
Resumo:
New actuation technology in functional or "smart" materials has opened new horizons in robotics actuation systems. Materials such as piezo-electric fiber composites, electro-active polymers and shape memory alloys (SMA) are being investigated as promising alternatives to standard servomotor technology [52]. This paper focuses on the use of SMAs for building muscle-like actuators. SMAs are extremely cheap, easily available commercially and have the advantage of working at low voltages. The use of SMA provides a very interesting alternative to the mechanisms used by conventional actuators. SMAs allow to drastically reduce the size, weight and complexity of robotic systems. In fact, their large force-weight ratio, large life cycles, negligible volume, sensing capability and noise-free operation make possible the use of this technology for building a new class of actuation devices. Nonetheless, high power consumption and low bandwidth limit this technology for certain kind of applications. This presents a challenge that must be addressed from both materials and control perspectives in order to overcome these drawbacks. Here, the latter is tackled. It has been demonstrated that suitable control strategies and proper mechanical arrangements can dramatically improve on SMA performance, mostly in terms of actuation speed and limit cycles.
Resumo:
A three-phase transformer with flat conductor layers is proposed in this article. This arrangement is used for high current density transformers. Cost effectiveness in planar magnetic are related with the optimization in the number of layers in each winding. This fact takes more relevance for the medium and high power three-phase transformers where the number of parallels to achieve the required DCR is increased. The proposed method allows the use of off-the-shell core shapes that are used for single phase transformers. Cost impact is significant and design implications become more flexible. The proposed solution has been validated and compared using the conventional and the proposed methodologies to design a high power (20 kW) transformer.
Resumo:
The increasing worldwide demand for electricity impels to develop clean and renewable energy resources. In the field of portable power devices not only size and weight represent important aspects to take into account, but the fuel and its storage are also critical issues to consider. In this last sense, the direct methanol (MeOH) fuel cells (DMFC) play an important role as they can offer high power and energy density, low emissions, ambient operating conditions and fast and convenient refuelling.
Resumo:
Introduction - SiO 2 •Simple composition and structure; Crystalline and amorphous phases •Adequate for atomistic simulations •Abundant in nature. Relevant for many technologies -Irradiation with swift heavy ions: •They provide EXTREME physical conditions •Very high excitation densities similar to high power lasers •Very high local temperatures •By playing with high energy and heavy mass (SHI) : •One can go from low electronic excitations (collisions regime) to high electronic excitations (electronic regime