947 resultados para Hierarchical Regression Analysis
Resumo:
We evaluated the accuracy of skinfold thicknesses, BMI and waist circumference for the prediction of percentage body fat (PBF) in a representative sample of 372 Swiss children aged 6-13 years. PBF was measured using dual-energy X-ray absorptiometry. On the basis of a preliminary bootstrap selection of predictors, seven regression models were evaluated. All models included sex, age and pubertal stage plus one of the following predictors: (1) log-transformed triceps skinfold (logTSF); (2) logTSF and waist circumference; (3) log-transformed sum of triceps and subscapular skinfolds (logSF2); (4) log-transformed sum of triceps, biceps, subscapular and supra-iliac skinfolds (logSF4); (5) BMI; (6) waist circumference; (7) BMI and waist circumference. The adjusted determination coefficient (R² adj) and the root mean squared error (RMSE; kg) were calculated for each model. LogSF4 (R² adj 0.85; RMSE 2.35) and logSF2 (R² adj 0.82; RMSE 2.54) were similarly accurate at predicting PBF and superior to logTSF (R² adj 0.75; RMSE 3.02), logTSF combined with waist circumference (R² adj 0.78; RMSE 2.85), BMI (R² adj 0.62; RMSE 3.73), waist circumference (R² adj 0.58; RMSE 3.89), and BMI combined with waist circumference (R² adj 0.63; RMSE 3.66) (P < 0.001 for all values of R² adj). The finding that logSF4 was only modestly superior to logSF2 and that logTSF was better than BMI and waist circumference at predicting PBF has important implications for paediatric epidemiological studies aimed at disentangling the effect of body fat on health outcomes.
Resumo:
The aim of this study was to investigate influence of traditional cardiovascular risk factors (CVRF) and subclinical atherosclerosis (ATS) burden on early stages of abdominal aortic diameter (AAD) widening among adults. 2,052 consecutive patients (P) (39 % women), mean age 52 ± 13 years, were prospectively screened for CVRF, ATS, and AAD. B-mode ultrasound was used to evaluate the largest AAD and to detect carotid and femoral atherosclerotic plaques. Mean AAD was 15.2 ± 2.8 mm. Atherosclerotic plaques were detected in 71 % of patients. Significant univariate correlation between AAD, traditional CVRF, and ABS was found. However, multiple regression analysis showed that only seven of them were significantly and weakly correlated with AAD (R² = 0.27, p < 0.001). On the other hand, a multivariate logistic analysis was used to evaluate CVRF impact on enlarged AAD ≥25 mm (EAAD) as compared to those with AAD <25 mm. These factors did not account for more than 30 % of interaction (R² = 0.30, p = 0.001). Furthermore, despite a large proportion of patients with high number of CVRF, and subclinical ATS, rate of patients with AAD ≥25 mm was low (1 %) and scattered regardless their CHD risk score or ATS burden. In conclusion, these results suggest that although some traditional CVRF and presence of ATS are associated with early stages of EAAD, other determinants still need to be identified for a better understanding of abdominal aortic aneurysm pathogenesis.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
To assess the effect of weight loss on resting metabolic rate (RMR), the energy expenditure of eight obese prepubertal children (age 9 +/- 1 years; weight 48.7 +/- 9.1 kg; BMI 25.3 +/- 3.9) and of 14 age-matched children of normal body weight (age 9 +/- 1 years; weight 28.8 +/- 5.6 kg; BMI 16.5 +/- 1.7) was measured by indirect calorimetry. The obese children were reinvestigated after a mean weight loss of 5.4 +/- 1.2 kg induced by a six-months mixed hypocaloric diet. Before slimming, the obese group showed a higher daily energy intake than the control group (10.40 +/- 3.45 MJ/day vs 7.97 +/- 2.02 MJ/day respectively; P less than 0.05) but a similar value was observed per unit fat-free mass (FFM) (0.315 +/- 0.032 MJ/kgFFM/day vs 0.329 +/- 0.041 MJ/kgFFM/day respectively). The average RMR of the obese children was greater than that of the control group (5217 +/- 531 kJ/day vs 4477 +/- 506 kJ/day) but similar after adjusting for FFM (4728 +/- 3102 kJ/day vs 4899 +/- 3102 kJ/day). Weight loss resulted in a reduction in RMR (5217 +/- 531 kJ/day vs 4874 +/- 820 kJ/day), each kg of weight loss being accompanied by a decrease of RMR of 64 kJ (15.3 kcal) per day. The changes in RMR induced by weight loss paralleled the changes in FFM. No difference was found in average RQ in obese children vs controls (0.85 +/- 0.03 vs 0.87 +/- 0.03 respectively) and in the obese children before and after weight loss (0.87 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
OBJECTIVE: To explore the potential relationship between fatigue following strokes and poststroke mood, cognitive dysfunction, disability, and infarct site and to determine the predictive factors in the development of poststroke fatigue (PSF) following minor infarcts. METHODS: Ninety-nine functionally active patients aged less than 70 years with a first, nondisabling stroke (NIH Stroke Scale score ≤6 in acute phase and ≤3 after 6 months, modified Rankin Scale score ≤1 at 6 months) were assessed during the acute phase and then at 6 (T1) and 12 months (T2) after their stroke. Scores in the Fatigue Assessment Inventory were described and correlated to age, gender, neurologic and functional impairment, lesion site, mood scores, neuropsychological data, laboratory data, and quality of life at T1 and T2 using a multivariate logistic regression analysis in order to determine which variables recorded at T1 best predicted fatigue at T2. RESULT: As many as 30.5% of the patients at T1 and 34.7% at T2 (11.6% new cases between T1 and T2) reported fatigue. At both 6 and 12 months, there was a significant association between fatigue and a reduction in professional activity. Attentional-executive impairment, depression, and anxiety levels remained associated with PSF throughout this time period, underlining the critical role of these variables in the genesis of PSF. There was no significant association between the lesion site and PSF. CONCLUSION: This study suggests that attentional and executive impairment, as well as depression and anxiety, may play a critical role in the development of PSF.
Resumo:
BACKGROUND AND PURPOSE: Beyond the Framingham Stroke Risk Score, prediction of future stroke may improve with a genetic risk score (GRS) based on single-nucleotide polymorphisms associated with stroke and its risk factors. METHODS: The study includes 4 population-based cohorts with 2047 first incident strokes from 22,720 initially stroke-free European origin participants aged ≥55 years, who were followed for up to 20 years. GRSs were constructed with 324 single-nucleotide polymorphisms implicated in stroke and 9 risk factors. The association of the GRS to first incident stroke was tested using Cox regression; the GRS predictive properties were assessed with area under the curve statistics comparing the GRS with age and sex, Framingham Stroke Risk Score models, and reclassification statistics. These analyses were performed per cohort and in a meta-analysis of pooled data. Replication was sought in a case-control study of ischemic stroke. RESULTS: In the meta-analysis, adding the GRS to the Framingham Stroke Risk Score, age and sex model resulted in a significant improvement in discrimination (all stroke: Δjoint area under the curve=0.016, P=2.3×10(-6); ischemic stroke: Δjoint area under the curve=0.021, P=3.7×10(-7)), although the overall area under the curve remained low. In all the studies, there was a highly significantly improved net reclassification index (P<10(-4)). CONCLUSIONS: The single-nucleotide polymorphisms associated with stroke and its risk factors result only in a small improvement in prediction of future stroke compared with the classical epidemiological risk factors for stroke.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
We evaluated a new combined sensor for monitoring transcutaneous carbon dioxide tension (PtcCO2) and oxygen tension (PtcO2) in 20 critically ill newborn infants. Arterial oxygen tension (PaO2) ranged from 16 to 126 torr and arterial carbon dioxide tension (PaCO2) from 14 to 72 torr. Linear correlation analysis (100 paired values) of PtcO2 versus PaO2 showed an r value of 0.75 with a regression equation of PtcO2 = 8.59 + 0.905 (PaO2), while PtcCO2 versus PaCO2 revealed a correlation coefficient of r = 0.89 with an equation of PtcCO2 = 2.53 + 1.06 (PaCO2). The bias between PaO2 and PtcO2 was -2.8 with a precision of +/- 16.0 torr (range, -87 to +48 torr). The bias between PaCO2 and PtcCO2 was -5.1 with a precision of +/- 7.3 torr (range, -34 to +8 torr). The transcutaneous sensor detected 83% of hypoxia (PaO2 less than 45 torr), 75% of hyperoxia (PaO2 greater than 90 torr), 45% of hypocapnia (PaCO2 less than 35 torr), and 96% of hypercapnia (PaCO2 greater than 45 torr). We conclude that the reliability of the combined transcutaneous PO2 and PCO2 monitor in sick neonates is good for detecting hypercapnia, fair for hypoxia and hyperoxia, but poor for hypocapnia. It is an improvement in that it spares available skin surface and requires less handling, but it appears to be slightly less accurate than the single electrodes.
Resumo:
Background: The type of anesthesia to be used for total hip arthroplasty (THA) is still a matter of debate. We compared the occurrence of per- and post-anesthesia incidents in patients receiving either general (GA) or regional anesthesia (RA). Methods: We used data from 29 hospitals, routinely collected in the Anaesthesia Databank Switzerland register between January 2001 and December 2003. We used multi-level logistic regression models. Results: There were more per- and post-anesthesia incidents under GA compared to RA (35.1% vs 32.7 %, n = 3191, and 23.1% vs 19.4%, n = 3258, respectively). In multi-level logistic regression analysis, RA was significantly associated with a lower incidence of per-anesthetic problems, especially hypertension, compared with GA. During the post-anesthetic period, RA was also less associated with pain. Conversely, RA was more associated with post-anesthetic hypotension, especially for epidural technique. In addition, age and ASA were more associated with incidents under GA compared to RA. Men were more associated with per-anesthetic problems under RA compared to GA. Whereas increased age (>67), gender (male), and ASA were linked with the choice of RA, we noticed that this choice depended also on hospital practices after we adjusted for the other variables. Conclusions: Compared to RA, GA was associated with an increased proportion of per- and post-anesthesia incidents. Although this study is only observational, it is rooted in daily practice. Whereas RA might be routinely proposed, GA might be indicated because of contraindications to RA, patients' preferences or other surgical or anaesthesiology related reasons. Finally, the choice of a type of anesthesia seems to depend on local practices that may differ between hospitals.
Resumo:
OBJECTIVE: Barbiturate-induced coma can be used in patients to treat intractable intracranial hypertension when other therapies, such as osmotic therapy and sedation, have failed. Despite control of intracranial pressure, cerebral infarction may still occur in some patients, and the effect of barbiturates on outcome remains uncertain. In this study, we examined the relationship between barbiturate infusion and brain tissue oxygen (PbtO2). METHODS: Ten volume-resuscitated brain-injured patients who were treated with pentobarbital infusion for intracranial hypertension and underwent PbtO2 monitoring were studied in a neurosurgical intensive care unit at a university-based Level I trauma center. PbtO2, intracranial pressure (ICP), mean arterial pressure, cerebral perfusion pressure (CPP), and brain temperature were continuously monitored and compared in settings in which barbiturates were or were not administered. RESULTS: Data were available from 1595 hours of PbtO2 monitoring. When pentobarbital administration began, the mean ICP, CPP, and PbtO2 were 18 +/- 10, 72 +/- 18, and 28 +/- 12 mm Hg, respectively. During the 3 hours before barbiturate infusion, the maximum ICP was 24 +/- 13 mm Hg and the minimum CPP was 65 +/- 20 mm Hg. In the majority of patients (70%), we observed an increase in PbtO2 associated with pentobarbital infusion. Within this group, logistic regression analysis demonstrated that a higher likelihood of compromised brain oxygen (PbtO2 < 20 mm Hg) was associated with a decrease in pentobarbital dose after controlling for ICP and other physiological parameters (P < 0.001). In the remaining 3 patients, pentobarbital was associated with lower PbtO2 levels. These patients had higher ICP, lower CPP, and later initiation of barbiturates compared with patients whose PbtO2 increased. CONCLUSION: Our preliminary findings suggest that pentobarbital administered for intractable intracranial hypertension is associated with a significant and independent increase in PbtO2 in the majority of patients. However, in some patients with more compromised brain physiology, pentobarbital may have a negative effect on PbtO2, particularly if administered late. Larger studies are needed to examine the relationship between barbiturates and cerebral oxygenation in brain-injured patients with refractory intracranial hypertension and to determine whether PbtO2 responses can help guide therapy.
Resumo:
BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.
Resumo:
Presented is an accurate swimming velocity estimation method using an inertial measurement unit (IMU) by employing a simple biomechanical constraint of motion along with Gaussian process regression to deal with sensor inherent errors. Experimental validation shows a velocity RMS error of 9.0 cm/s and high linear correlation when compared with a commercial tethered reference system. The results confirm the practicality of the presented method to estimate swimming velocity using a single low-cost, body-worn IMU.
Resumo:
Many interventions promoting physical activity (PA) are effective in preventing disease onset, and although studies have found a positive relationship between health-related quality of life (HRQL) and PA, most of these studies have focused on older adults and those with chronic conditions. Less is known regarding the association between PA level and HRQL among healthy adults. Our objective was to analyse the relationship between PA level and HRQL among a sample of 573 employees aged 20-68 taking part in a workplace intervention to promote PA. Measures included HRQL (using a single item) and PA (i.e. Godin Leisure-Time Questionnaire). The Modified Canadian Aerobic Fitness Test (MCAFT) was also completed by 10% of the employees. MET-minute scores (assessing energy expenditure over one week) were compared across HRQL categories using ANOVA. A multiple linear regression analysis was conducted to further examine the relationship between HRQL and PA, controlling for potential covariates. Participants in the higher health status categories were found to report higher levels of energy expenditure (one-way ANOVA, p < 0.001). In the multiple linear regression model, each unit increase in health status level translated in a mean increase of 356 MET-minutes in energy expenditure (p < 0.001). This single-item assessment of health status explained six percent of the variance in energy expenditure. The study concludes that higher energy expenditure through PA among an adult workplace population is positively associated with increased health status, and it also suggests that a single-item HRQL measure is suitable for community- and population-based studies, reducing response burden and research costs.
Resumo:
PURPOSE: To explore whether triaxial accelerometric measurements can be utilized to accurately assess speed and incline of running in free-living conditions. METHODS: Body accelerations during running were recorded at the lower back and at the heel by a portable data logger in 20 human subjects, 10 men, and 10 women. After parameterizing body accelerations, two neural networks were designed to recognize each running pattern and calculate speed and incline. Each subject ran 18 times on outdoor roads at various speeds and inclines; 12 runs were used to calibrate the neural networks whereas the 6 other runs were used to validate the model. RESULTS: A small difference between the estimated and the actual values was observed: the square root of the mean square error (RMSE) was 0.12 m x s(-1) for speed and 0.014 radiant (rad) (or 1.4% in absolute value) for incline. Multiple regression analysis allowed accurate prediction of speed (RMSE = 0.14 m x s(-1)) but not of incline (RMSE = 0.026 rad or 2.6% slope). CONCLUSION: Triaxial accelerometric measurements allows an accurate estimation of speed of running and incline of terrain (the latter with more uncertainty). This will permit the validation of the energetic results generated on the treadmill as applied to more physiological unconstrained running conditions.
Resumo:
Introduction: Mean platelet volume (MPV) was shown to be significantly increased in patients with acute ischaemic stroke, especially in non-lacunar strokes. Moreover, some studies concluded that increased MPV is related to poor functional outcome after ischaemic stroke, although this association is still controversial. However, the determinants of MPV in patients with acute ischaemic stroke have never been investigated. Subjects and methods: We recorded the main demographic, clinical and laboratory data of consecutive patients with acute (admitted within 24 h after stroke onset) ischaemic stroke admitted in our Neurology Service between January 2003 and December 2008. MPV was generated at admission by the Sysmex XE-2100 automated cell counter (Sysmex Corporation, Kobe, Japan) from ethylenediaminetetraacetic acid blood samples stored at room temperature until measurement. The association of these parameters with MPV was investigated in univariate and multivariate analysis. Results: A total of 636 patients was included in our study. The median MPV was 10.4 ± 0.82 fL. In univariate analysis, glucose (β= 0.03, P= 0.05), serum creatinine (β= 0.002, P= 0.02), haemoglobin (β= 0.009, P < 0.001), platelet count (β=-0.002, P < 0.001) and history of arterial hypertension (β= 0.21, P= 0.005) were found to be significantly associated with MPV. In multivariate robust regression analysis, only hypertension and platelet count remained as independent determinants of MPV. Conclusions: In patients with acute ischaemic stroke, platelet count and history of hypertension are the only determinants of MPV.