982 resultados para Heavy water reactors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy haul railway lines are important and expensive items of infrastructure operating in an environment which is increasingly focussed on risk-based management and constrained profit margins. It is vital that costs are minimised but also that infrastructure satisfies failure criteria and standards of reliability which account for the random nature of wheel-rail forces and of the properties of the materials in the track. In Australia and the USA, concrete railway sleepers/ties are still designed using methods which the rest of the civil engineering world discarded decades ago in favour of the more rational, more economical and probabilistically based, limit states design (LSD) concept. This paper describes a LSD method for concrete sleepers which is based on (a) billions of measurements over many years of the real, random wheel-rail forces on heavy haul lines, and (b) the true capacity of sleepers. The essential principles on which the new method is based are similar to current, widely used LSD-based standards for concrete structures. The paper proposes and describes four limit states which a sleeper must satisfy, namely: strength; operations; serviceability; and fatigue. The method has been applied commercially to two new major heavy haul lines in Australia, where it has saved clients millions of dollars in capital expenditure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barramundi Lates calcarifer reared in cool water (20-22 degrees C) grow slowly and feed is used poorly compared with fish in warm water (28-32 degrees C). Two comparative slaughter growth assays were carried out with juvenile barramundi to see if increasing the digestible energy (DE) and/or the n-3 highly unsaturated fatty acid (n-3 HUFA) content of the feed would improve growth of fish raised in cool water. Increasing the DE content of the feed from 15 to 17 or 19 MJ kg(-1) while maintaining a constant protein to energy ratio in Experiment 1 brought about significant improvements in feed conversion ratio (FCR) (from 2.01 to 1.19) and daily growth coefficient (DGC; from 0.69 to 1.08%/day) for fish at 20 degrees C. For fish at 29 degrees C, improvements, while significant, were of a lesser magnitude: from 1.32 to 0.97 for FCR and from 3.24 to 3.65%/day for DGC. Increasing the absolute amount of dietary n-3 HUFA, expressed as the sum of eicosapentaenoic and docosahexaenoic fatty acids, from 0.5% to 2.0% in Experiment 2 improved DGC linearly and FCR curvilinearly for fish at 29 degrees C whereas at 20 degrees C, DGC was not affected while FCR improved slightly (from 1.83 to 1.68). Feed conversion ratio was optimized with a dietary n-3 HUFA of about 1.5%. Providing barramundi with a feed that is high in DE (viz 19 MJ kg(-1)) and a digestible protein to DE ratio of 22.5 g MJ(-1) is a practical strategy for improving the productivity of barramundi cultured in cool water whereas increasing dietary n-3 HUFA conferred very little additional benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salinity, sodicity, acidity, and phytotoxic levels of chloride (Cl) in subsoils are major constraints to crop production in many soils of north-eastern Australia because they reduce the ability of crop roots to extract water and nutrients from the soil. The complex interactions and correlations among soil properties result in multi-colinearity between soil properties and crop yield that makes it difficult to determine which constraint is the major limitation. We used ridge-regression analysis to overcome colinearity to evaluate the contribution of soil factors and water supply to the variation in the yields of 5 winter crops on soils with various levels and combinations of subsoil constraints in the region. Subsoil constraints measured were soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). The ridge regression procedure selected several of the variables used in a descriptive model, which included in-crop rainfall, plant-available soil water at sowing in the 0.90-1.10 m soil layer, and soil Cl in the 0.90-1.10 m soil layer, and accounted for 77-85% of the variation in the grain yields of the 5 winter crops. Inclusion of ESP of the top soil (0.0-0.10 m soil layer) marginally increased the descriptive capability of the models for bread wheat, barley and durum wheat. Subsoil Cl concentration was found to be an effective substitute for subsoil water extraction. The estimates of the critical levels of subsoil Cl for a 10% reduction in the grain yield were 492 mg cl/kg for chickpea, 662 mg Cl/kg for durum wheat, 854 mg Cl/kg for bread wheat, 980 mg Cl/kg for canola, and 1012 mg Cl/kg for barley, thus suggesting that chickpea and durum wheat were more sensitive to subsoil Cl than bread wheat, barley, and canola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two field experiments using maize (Pioneer 31H50) and three watering regimes [(i) irrigated for the whole crop cycle, until anthesis, (ii) not at all (experiment 1) and (iii) fully irrigated and rain grown for the whole crop cycle (experiment 2)] were conducted at Gatton, Australia, during the 2003-04 season. Data on crop ontogeny, leaf, sheath and internode lengths and leaf width, and senescence were collected at 1- to 3-day intervals. A glasshouse experiment during 2003 quantified the responses of leaf shape and leaf presentation to various levels of water stress. Data from experiment 1 were used to modify and parameterise an architectural model of maize (ADEL-Maize) to incorporate the impact of water stress on maize canopy characteristics. The modified model produced accurate fitted values for experiment 1 for final leaf area and plant height, but values during development for leaf area were lower than observed data. Crop duration was reasonably well fitted and differences between the fully irrigated and rain-grown crops were accurately predicted. Final representations of maize crop canopies were realistic. Possible explanations for low values of leaf area are provided. The model requires further development using data from the glasshouse study and before being validated using data from experiment 2 and other independent data. It will then be used to extend functionality in architectural models of maize. With further research and development, the model should be particularly useful in examining the response of maize production to water stress including improved prediction of total biomass and grain yield. This will facilitate improved simulation of plant growth and development processes allowing investigation of genotype by environment interactions under conditions of suboptimal water supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single or multiple factors implicated in subsoil constraints including salinity, sodicity, and phytotoxic concentrations of chloride (Cl) are present in many Vertosols including those occurring in Queensland, Australia. The variable distribution and the complex interactions that exist between these constraints limit the agronomic or management options available to manage the soil with these subsoil constraints. The identification of crops and cultivars adapted to these adverse subsoil conditions and/or able to exploit subsoil water may be an option to maintain productivity of these soils. We evaluated relative performance of 5 winter crop species, in terms of grain yields, nutrient concentration, and ability to extract soil water, grown on soils with various levels and combinations of subsoil constraints in 19 field experiments over 2 years. Subsoil constraints were measured by levels of soil Cl, electrical conductivity of the saturation extract (ECse), and exchangeable sodium percentage (ESP). Increasing levels of subsoil constraints significantly decreased maximum depth of water extraction, grain yield, and plant-available water capacity for all the 5 crops and more so for chickpea and durum wheat than bread wheat, barley, or canola. Increasing soil Cl levels had a greater restricting effect on water availability than did ECse and ESP. We developed empirical relationships between soil Cl, ECse, and ESP and crop lower limit (CLL) for estimating subsoil water extraction by 5 winter crops. However, the presence of gypsum influenced the ability to predict CLL based on the levels of ECse. Stronger relationships between apparent unused plant-available water (CLL - LL15; LL15 is lower limit at -1.5 MPa) and soil Cl concentrations than ESP or ECse suggested that the presence of high Cl in these soils most likely inhibited the subsoil water extraction by the crops. This was supported by increased sodium (Na) and Cl concentration with a corresponding decrease in calcium (Ca) and potassium (K) in young mature leaf of bread wheat, durum wheat, and chickpea with increasing levels of subsoil constraints. Of the 2 ions, Na and Cl, the latter appears to be more damaging than the former, resulting in plant dieback and reduced grain yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of grasslands to disturbance varies with the nature of the disturbance and the productivity of the landscape. In highly productive grasslands, competitive exclusion often results in decreased species richness and grazing may allow more species to coexist. Once widespread, grasslands dominated by Dichanthium sericeum (Queensland bluegrass) and Astrebla spp. (Mitchell grass) occur on fertile plains but have been reduced in extent by cultivation. We tested the effects of exclusion of livestock grazing on these grasslands by comparing the floristic composition of sites in a nature reserve with an adjacent stock reserve. In addition, sites that had been cultivated within the nature reserve were compared with those where grazing but no cultivation had occurred. To partition the effects of temporal variation from spatial variation we sampled sites in three different years (1998, 2002 and 2004). Some 194 taxa were recorded at the nature reserve and surrounding stock routes. Sampling time, the occurrence of past cultivation and livestock grazing all influenced species composition. Species richness varied greatly between sampling periods relating to highly variable rainfall and water availability on heavy clay soils. Native species richness was significantly lower at previously cultivated sites (13-22 years after cultivation), but was not significantly influenced by grazing exclusion. After 8 years it appears that reintroducing disturbance in the form of livestock grazing is not necessary to maintain plant species richness in the reserve. The highly variable climate (e.g. droughts) probably plays an important role in the coexistence of species by negating competitive exclusion and allowing interstitial species to persist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the paper new way of classifying spillways have been suggested. The various types, merits and demerits or existing spillway devices have been discussed. The considerations governing the choice of a design of a spillway have been mention. A criteria for working out the economics of spillway design has been suggested. An efficient surplus sing device has next been described and compared with other devices. In conclusion it has been suggested that the most efficient and at the same time economical arrangement will be a combination of devices. In conclusion it has been suggested will be a combination of crest gate, volute siphons and high head gates. The appendix gives a list of devices used in dams in various parts of the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water adsorbs molecularly on a clean Zn(0001) surface; on a surface covered with atomic oxygen, however, hydroxyl species is produced due to proton abstraction by the surface oxygen atoms. Methanol, molecularly adsorbed on a clean surface at 80 K, transforms to methoxy species above 110 K. On an atomic oxygen-covered surface, adsorbed methanol gives rise to methoxy species and water, the latter arising from proton abstraction. HCHO adsorbs molecularly at 80 K on both clean as well as oxygen-covered surfaces and polymerizes at higher temperatures. Formic acid does not adsorb on a clean Zn surface, but on an oxygen-covered surface gives rise to formate and hydroxyl species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Better understanding of root system structure and function is critical to crop improvement in water-limited environments. The aims of this study were to examine root system characteristics of two wheat genotypes contrasting in tolerance to water limitation and to assess the functional implications on adaptation to water-limited environments of any differences found. The drought tolerant barley variety, Mackay, was also included to allow inter-species comparison. Single plants were grown in large, soil-filled root-observation chambers. Root growth was monitored by digital imaging and water extraction was measured. Root architecture differed markedly among the genotypes. The drought-tolerant wheat (cv. SeriM82) had a compact root system, while roots of barley cv. Mackay occupied the largest soil volume. Relative to the standard wheat variety (Hartog), SeriM82 had a more uniform rooting pattern and greater root length at depth. Despite the more compact root architecture of SeriM82, total water extracted did not differ between wheat genotypes. To quantify the value of these adaptive traits, a simulation analysis was conducted with the cropping system model APSIM, for a wide range of environments in southern Queensland, Australia. The analysis indicated a mean relative yield benefit of 14.5% in water-deficit seasons. Each additional millimetre of water extracted during grain filling generated an extra 55 kg ha-1 of grain yield. The functional implications of root traits on temporal patterns and total amount of water capture, and their importance in crop adaptation to specific water-limited environments, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of recycled water (effluent) on 8 tropical grasses growing in 100-L bags of sand were studied in Murrumba Downs, just north of Brisbane in southern Queensland (27.4°S, 153.1°E). The species used were: Axonopus compressus (broad-leaf carpetgrass), Cynodon dactylon (bermudagrass 'Winter Green') and C. dactylon x C. transvaalensis hybrid ('Tifgreen'), Digitaria didactyla (Queensland blue couch), Paspalum notatum (bahiagrass '38824'), Stenotaphrum secundatum (buffalograss 'Palmetto'), Eremochloa ophiuroides (centipedegrass 'Centec') and Zoysia japonica (zoysiagrass 'ZT-11'). From May 2002 to June 2003, control plots were irrigated with potable water and fertilised monthly. Plots irrigated with effluent received no fertiliser from May to August 2002 (deficient phase), complete fertilisers at control rates from September to December 2002 (recovery phase) and nitrogen (N) only at control rates from January to June 2003 (supplementary phase). In October 2002, the average shoot weight of plants from the effluent plots was 4% of that from potable plots, with centipedegrass less affected than the other species (relative growth of 20%). Shoot N concentrations declined by 40% in the effluent plots from May to August 2002 (1.8 ± 0.1%) along with phosphorus (P, 0.46 ± 0.02%), potassium (K, 1.6 ± 0.2%), sulfur (S, 0.28 ± 0.02%) and manganese (Mn, 19 ± 2 mg/kg) concentrations. Only the N and Mn concentrations were below the optimum for grasses. The grasses grew satisfactorily when irrigated with effluent if it was supplemented with N. Between January and June 2003 the average weight of shoots from the effluent plots was 116% of the weight of shoots from the control plots. Shoot nutrient concentrations were also similar in the 2 regimes at this time. The recycled water supplied 23% of the N required for maximum shoot growth, 80-100% of the P and K, and 500-880% of the S, calcium and magnesium. The use of recycled water represents savings in irrigation and fertiliser costs, and reductions in the discharge of N and P to local waterways. Effluent is currently about 50% of the cost of potable water with a saving of about AU$8000/ha.year for a typical sporting field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin-angiotensin-aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replacement of deteriorated water pipes is a capital-intensive activity for utility companies. Replacement planning aims to minimize total costs while maintaining a satisfactory level of service and is usually conducted for individual pipes. Scheduling replacement in groups is seen to be a better method and has the potential to provide benefits such as the reduction of maintenance costs and service interruptions. However, developing group replacement schedules is a complex task and often beyond the ability of a human expert, especially when multiple or conflicting objectives need to be catered for, such as minimization of total costs and service interruptions. This paper describes the development of a novel replacement decision optimization model for group scheduling (RDOM-GS), which enables multiple group-scheduling criteria by integrating new cost functions, a service interruption model, and optimization algorithms into a unified procedure. An industry case study demonstrates that RDOM-GS can improve replacement planning significantly and reduce costs and service interruptions.