994 resultados para Heavy Vehicle
Resumo:
Within the framework of the improved isospin dependent quantum molecular dynamics (ImIQMD) model, pion emission in heavy-ion collisions in the region 1 A GeV is investigated systematically, in which the pion is considered to be mainly produced by the decay of resonances Delta(1232) and N*(1440). The in-medium dependence and Coulomb effects of pion production are included in the calculation. Total pion multiplicity and pi(-)/pi(+) yields are calculated for the reaction Au-197+(197) Au in central collisions for selected Skyrme parameters SkP, SLy6, Ska, SIII and compared with the measured data of the FOPI collaboration.
Resumo:
Within the hadronic transport model IBUU04, we study the density-dependent symmetry energy by using the neutron-proton differential flow from the Sn-132+Sn-124 reactions at beam energies of 200, 400, 600 and 800MeV per nucleon. The strong effect of the symmetry energy is shown at the incident beam energy of 400 MeV/A. The small medium-effect of the neutron-proton differential flow is also found. We also study the neutron-proton differential flows with impact parameters of 3, 5, 7 fm. It is found that in semi-central collisions the sensitivity of the neutron-proton differential flow to the symmetry energy is larger.
Resumo:
The effect of C-12(6+) heavy ions bombardment on mutagenesis in Salvia splendens Ker-Gawl. was studied. Dose-response studies indicated that there was a peak of malformation frequency of S. splendens at 200 Gy. Abnormal leaf mutants of the bileaf, trileaf and tetraleaf conglutination were selected. Meanwhile, a bicolor flower chimera with dark red and fresh red flower was isolated in M1 generation of S. splendens. Random amplified polymorphic DNA (RAPD) analysis demonstrated that DNA variations existed among the wild-type, fresh and dark red flower shoots of the chimera. The dark red flower shoots of the chimera were conserved and cultivated at a large-scale through micropropagation. MS supplemented with 2.0 mg/L BA and 0.3 mg/L NAA was the optimal medium in which the maximum proliferation ratio (5.2-fold) and rooting rate (88%) were achieved after 6 weeks. Our findings provide an important method to improve the ornamental quality of S. splendens.
Resumo:
Amorphous SiO2 (a-SiO2) thin films were thermally grown on single-crystalline silicon. These a-SiO2/Si samples were first implanted (C-doped) with 100-keV carbon ion at room temperature (RT) at a dose of 5.0 x 10(17) C-ions/cm(2) and were then irradiated at RT by using 853 MeV Pb ions at closes of 5.0 x 10(11), 1.0 x 10(12), 2.0 x 10(12) and 5.0 x 10(12) Pb-ions/cm(2), respectively. The microstructures and the photoluminescence (PL) properties of these samples induced by Pb ions were investigated using fluorescence spectroscopy and transmission electron microscopy. We found that high-energy Pb-ion irradiation could induce the formation of a new phase and a change in the PL property of C-doped a-SiO2/Si samples. The relationship between the observed phenomena and the ion irradiation parameters is briefly discussed.
Resumo:
Within the preformed cluster model approach, the values of the preformation factors have been deduced from the experimental cluster decay half-lives assuming that the decay constant of the heavy-ion emission is the product of the assault frequency, the preformation factor and the penetrability. The law according to which the preformation factors follow a simple dependence on the mass of the cluster was confirmed. Then predictions for some of the most possible cluster decays are provided.
Resumo:
In this article we perform systematic calculations on low-lying states of 33 nuclei with A=202-212, using the nucleon pair approximation of the shell model. We use a phenomenological shell-model Hamiltonian that includes single-particle energies, monopole and quadrupole pairing interactions, and quadrupole-quadrupole interactions. The building blocks of our model space include one J=4 valence neutron pair, and one J=4,6,8 valence proton pair, in addition to the usual S and D pairs. We calculate binding energies, excitation energies, electric quadrupole and magnetic dipole moments of low-lying states, and E2 transition rates between low-lying states. Our calculated results are reasonably consistent with available experimental data. The calculated quadrupole moments and magnetic moments, many of which have not yet been measured for these nuclei, are useful for future experimental measurements.
Resumo:
Experimental alpha decay energies and half-lives are investigated systematically to extract alpha particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the alpha decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.
Resumo:
A systematic study of the pi(-)/pi(+) ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the pi(-)/pi(+) ratio in head-on collisions of Ca-48 + Ca-48, Sn-124 + Sn-124, and Au-197 + Au-197 at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the pi(-)/pi(+) ratio as well as their time evolution and spatial distributions demonstrates clearly that the pi(-)/pi(+) ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
Various cluster radioactivities of heavy nuclei have been investigated by using the unified fission model (UFM). The cluster preformation factors have been extracted by employing the UFM connected with the experimental half-lives, and the relationship of preformation probability between the cluster and alpha-particle has been discussed in detail. In addition, the cluster preformation probability has been studied in the framework of statistical physics. Some useful predictions on the cluster emission half-lives are provided for future experiments.
Resumo:
Previous experimental results of (EC+beta(+)) decay for the medium-heavy nuclei reported by our group since 1996, including Er-153, Yb-157, Fr-209, Ce-128, Ce-130, and Pr-128 have been briefly summarized. The observed low-lying states in their daughter nuclei have been reviewed in a systematic way and compared with different model calculations. Finally, some questions have been put forward for further study and discussion.
Resumo:
Theoretical alpha-decay half-lives of the heaviest nuclei are calculated using the experimental Q value. The barriers in the quasi-molecular shape path is determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the Density-Dependent, M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulae. The calculations provide consistent estimates for the half-lives of the a decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time.
Resumo:
We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.
Resumo:
We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.
Resumo:
Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The nuclear stopping and the radial flow are investigated with an isospin-dependent quantum molecular dynamics (IQMD) model for Ni + Ni and Pb + Pb from 0.4 to and 1.2 GeV/u. The expansion velocity as well as the degree of nuclear stopping are higher in the heavier system at all energies. The ratio between the flow energy and the total available energy in center of mass of the colliding systems exhibits a positive correlation to the degree of nuclear stopping. The maximum density (rho(max)) achieved in the compression is comparable to the hydrodynamics prediction only if the non-zero collision time effect is taken into account in the later. Due to the partial transparency, the growing of the maximum density achieved in the central region of the fireball with the increase of beam energy becomes gradually flat in the 1 GeV/u energy regime. (C) 2008 Elsevier B.V. All rights reserved.