989 resultados para Health Sciences, Occupational Health and Safety|Health Sciences, Public Health|Sociology, Ethnic and Racial Studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bifunctional carbamoyl methyl sulfoxide ligands, PhCH2SOCH2CONHPh (L-1), PhCH2SOCH2CONHCH2Ph (L-2), (PhSOCH2CONPr2)-Pr-i (L-3), PhSOCH2CONBu2 (L-4), (PhSOCH2CONBu2)-Bu-i (L-5) and PhSOCH2CON(C8H17)(2) (L-6) have been synthesized and characterized by spectroscopic methods. The selected coordination chemistry of L-1, L-3, L-4 and L-5 with [UO2(NO3)(2)] and [Ce(NO3)(3)] has been evaluated. The structures of the compounds [UO2(NO3)(2)((PhSOCH2CONBu2)-Bu-i)] (10) and [Ce(NO3)(3)(PhSOCH2CONBu2)(2)] (12) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of ligand L-6 with U(VI), Pu(IV) and Am(III) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) in up to 10 M HNO3 but not for Am(III). Thermal studies on compounds 8 and 10 in air revealed that the ligands can be destroyed completely on incineration. The electron spray mass spectra of compounds 8 and 10 in acetone show that extensive ligand distribution reactions occur in solution to give a mixture of products with ligand to metal ratios of 1 : 1 and 2 : 1. However, 10 retains its solid state structure in CH2Cl2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordination chemistry of iso-butyramide based ligands such as: (C3H7CON)-C-i((C3H7)-C-i)(2), (C3H7CON)-C-i(C4H9)(2) and (C3H7CON)-C-i((C4H9)-C-i)(2) with [UO2(NO3)(2) center dot 6H(2)O], [UO2(OO)(2) center dot 2H(2)O] {where OO = C4H3SCOCHCCCF3 (TTA), C6H5COCHCOCF3 (BTA) and C6H5COCHCOC6H5 (DBM)), [Th(NO3)(4) center dot 6H(2)O] and [La(NO3)(3) center dot 6H(2)O] has been evaluated. Structures for the compounds [UO2(NO3)(2)CC3H7CON{(C4H9)-C-i}(2))(2)] and [UO2(C6H5COCHCOC6H5)(2)((C3H7CON)-C-i{(C3H7)-C-i)(2))] have been determined by single crystal X-ray diffraction methods. Preliminary separation studies from nitric acid medium using the amide (C3H7CON)-C-i((C4H9)-C-i)(2) with U(VI), Th(IV) and La(Ill) ions showed the selective precipitation of uranyl ion from the mixture. Thermal study of the compound [UO2(NO3)(2)((C3H7CON)-C-i((C4H9)-C-i)(2))(2)] in air revealed that the ligands can be destroyed completely on incineration. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L-1), (C5H7N2CH2CONBu2)-Bu-i (L-2), C3H3N2CH2CONBu2 (L-3), (C3H3N2CH2CONBu2)-Bu-i (L-4) and C5H7N2CH2CON(C8H17)(2) (L-5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L-1 to L-4 with [UO2(NO3)(2)center dot 6H(2)O], [La(NO3)(3)center dot 6H(2)O] and [Ce(NO3)(3)center dot 6H(2)O] has been evaluated. Structures for the compounds [UO2(NO3)(2) C5H7N2CH2CONBu2] (6) [UO2(NO3)(2) (C5H7N2CHCONBu2)-Bu-i] (7) and [Ce(NO3)(3){C(3)H(3)N(2)CH(2)CON(i)Bu2}(2)] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L-5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(TV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new metal-organic based polymeric complexes, [Cu-4(O2CCH2CO2)(4)(L)].7H(2)O (1) and [CO2(O2CCH2CO2)(2)(L)].2H(2)O (2) [L = hexamethylenetetramine (urotropine)], have been synthesized and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 is a 1D coordination polymer comprising a carboxylato, bridged Cu-4 moiety linked by a tetradentate bridging urotropine. Complex 2 is a 3D coordination polymer made of pseudo-two-dimensional layers of Co(II) ions linked by malonate anions in syn-anticonformation which are bridged by bidentate urotropine in trans fashion, Complex 1 crystallizes in the orthothombic system, space group Pmmn, with a = 14,80(2) Angstrom, b = 14.54(2) Angstrom, c = 7.325(10) Angstrom, beta = 90degrees, and Z = 4. Complex 2 crystallizes in the orthorhombic system, space group Imm2, a = 7.584(11) Angstrom, b = 15.80(2) Angstrom, c = 6.939(13) Angstrom, beta = 90.10degrees(1), and Z = 4. Variable temperature (300-2 K) magnetic behavior reveals the existence of ferro- and antiferromagnetic interactions in 1 and only antiferromagnetic interactions in 2. The best fitted parameters for complex 1 are J = 13.5 cm(-1), J = -18.1 cm(-1), and g = 2.14 considering only intra-Cu-4 interactions through carboxylate and urotropine pathways. In case of complex 2, the fit of the magnetic data considering intralayer interaction through carboxylate pathway as well as interlayer interaction via urotropine pathway gave no satisfactory result at this moment using any model known due to considerable orbital contribution of Co(II) ions to the magnetic moment and its complicated structure. Assuming isolated Co(II) ions (without any coupling, J = 0) the shape of the chi(M)T curve fits well with experimental data except at very low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n] py(2)N(4) n = 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]- py(2)N(4) are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degreesC in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22] py(2)N(4) show significant differences from those described previously, while [24] py(2)N(4) has not been studied before and [ 26] py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [ 22]- to [26]- py(2)N(4) were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving - Williams order: NiL2+ < CuL2+ >> ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu-2([20] py(2)N(4))(H2O)(4)][Cu(H2O)(6)](SO4)(3) . 3H(2)O ( 1) and [Cu-2([20] py(2)N(4))(CH3CN)(4)][Ni([20] py(2)N(4))](2)(ClO4)(8) . H2O (2), which are composed of homodinuclear [Cu-2([20] py(2)N(4)])(H2O)(4)](4+) ( 1a) and [Cu-2([20] py(2)N(4)])(CH3CN))(4)](4+) (2a), and mononuclear species, [Cu(H2O)(6)](2+) (1b) and [Ni([20] py(2)N(4))](2+) ( 2b), respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in 1a and acetonitrile in 2a. The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) Angstrom in 1a and 2a, respectively. The mononuclear complex [Ni([20] py(2)N(4)])](2+) displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17]( DBF) N2O2 (L-1) and N,N'-bis(2-aminoethyl)-[22](DBF)N2O3 (L-2), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO3. Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L-2. The thermodynamic binding affinities of the metal complexes of L-2 are lower than those of L-1 as expected, but the Pb2+ complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd2+ and Pb2+ for L-1 are very high, when compared to those of Co2+, Ni2+ and Zn2+. These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper( II) complexes with both ligands were further studied by UV-vis-MR spectroscopy in DMSO-H2O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L-1 was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co2+ to Zn2+ complexes, and only the larger Cd2+ and Pb2+ manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trans-1, [HNEt3][Co-III(L-Se)(2)]center dot H2O and cis-1, [HNEt3][Co-III(L-Se)(2)]center dot 3H(2)O have been synthesized and characterized by single-crystal X-ray studies. The counter ion Et3NH+ plays a crucial role in the crystal packing leading to the formation of two distinctly different supramolecular assemblies in the two complexes. In trans-1, Co-bisphenolate units and triethylamine molecules are arranged in a linear fashion leading to a supramolecular columnar assembly along the crystallographic a-axis. In this assembly, triethylammonium ions are sandwiched between successive Co-bisphenolate units and act as gluing agents joining Co-bisphenolate units on either side through C-H center dot center dot center dot pi interactions. In sharp contrast to trans-1, Co-bisphenolate units and triethylammonium ions in cis-1 are arranged in a helical supramolecular assembly through similar C-H center dot center dot center dot pi interactions along the crystallographic b-axis. The Se center dot center dot center dot Se van der Waals interactions may be responsible for the predominant occurrence of the cis-isomer. The cyclic voltammetric studies showed quasi-reversible waves for the cobalt(III) -> cobalt(II) reductions with E-1/2 = 0.635 and 0.628 V vs. Ag/AgCl for cis-1 (at similar to 5 degrees C) and trans-1 (at similar to 25 degrees C), respectively. DFT calculations show that the trans-form is the thermodynamic product with higher stability than the cis-one, which is consistent with the variable temperature H-1 NMR studies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The previously synthesised Schiff-base ligands 2-(2-Ph2PC6H4N = CH) - R' - C6H3OH (R' = 3-OCH3, HL1; 5-OCH3, HL2; 5-Br, HL3; 5-Cl, HL4) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino) aniline with the appropriate substituted salicylaldehyde. HL1-4 react directly with (MCl2)-Cl-II (M = Pd, Pt) or (PtI2)-I-II(cod) affording neutral square-planar complexes of general formula [(MCl)-Cl-II(eta(3)-L1-4)] (M = Pd, Pt, 1 - 8) and [(PtI)-I-II(eta(3)-L1-4)] (M = Pd, Pt, 9 - 12). Reaction of complexes 1 - 4 with the triarylphosphines PR3 (R = Ph, p-tolyl) gave the novel ionic complexes [Pd-II(PR3)(eta(3)- L1-4)] ClO4 (13 - 20). Substituted platinum complexes of the type [Pt-II(PR3)(eta(3)- L1-4)] ClO4 (R = P(CH2CH2CN)(3) 21 - 24) and [Pt-II( P(p-tolyl)(3))(eta(3)-L-3,L-4)] ClO4 ( 25 and 26) were synthesised from the appropriate [(PtCl)-Cl-II(eta(3)-L1-4)] complex (5 - 8) and PR3. The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O, N, P donor set together with one further atom which is trans to the central nitrogen atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 ( obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH)L-1.CH3OH and MoO2L, respectively, (where L2-=dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 3 - 10 of the type MoO2LB (where B=gamma-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, ( UV-Vis, IR and H-1 NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH)L-1.CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis. crystal structure and thermal study of the blue catena-(L-glutamato)-aqua copper(II) monohydrate have been reported. The compound crystallizes in P2(1)2(1)2(1) space group and consists of a polymeric three-dimensional network of copper(II) which is coordinated with the amino nitrogen and the carboxylate oxygen Of L-glutamate, the side chain carboxylate oxygen of a neighbouring L-glutamate and the oxygen of a water molecule in the equatorial position. Weak coordination of two additional glutamate oxygen atoms to both the axial positions Completes a distorted octahedron. The crystal structure shows that the lattice water is stabilized by the formation of strong H-bonding network with the coordinated water molecule. Removal and reabsorption of the water molecule have been studied by thermal analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crumpets are made by heating fermented batter on a hot plate at around 230°C. The characteristic structure dominated by vertical pores develops rapidly: structure has developed throughout around 75% of the product height within 30s, which is far faster than might be expected from transient heat conduction through the batter. Cooking is complete within around 3 min. Image analysis based on results from X-ray tomography shows that the voidage fraction is approximately constant and that there is continual coalescence between the larger pores throughout the product although there is also a steady level of small bubbles trapped within the solidified batter. We report here experimental studies which shed light on some of the mechanisms responsible for this structure, together with some models of key phenomena.Three aspects are discussed here: the role of gas (carbon dioxide and nitrogen) nuclei in initiating structure development; convective heat transfer inside the developing pores; and the kinetics of setting the batter into an elastic solid structure. It is shown conclusively that the small bubbles of carbon dioxide resulting from the fermentation stage play a crucial role as nuclei for pore development: without these nuclei, the result is not a porous structure, but rather a solid, elastic, inedible, gelatinized product. These nuclei are also responsible for the tiny bubbles which are set in the final product. The nuclei form the source of the dominant pore structure which is largely driven by the, initially explosive, release of water vapour from the batter together with the desorption of dissolved carbon dioxide. It is argued that the rapid evaporation, transport and condensation of steam within the growing pores provides an important mechanism, as in a heat pipe, for rapid heat transfer, and models for this process are developed and tested. The setting of the continuous batter phase is essential for final product quality: studies using differential scanning calorimetry and on the kinetics of change in the visco-elastic properties of the batter suggest that this process is driven by the kinetics of gelatinization. Unlike many thermally driven food processes the rates of heating are such that gelatinization kinetics cannot be neglected. The implications of these results for modelling and for the development of novel structures are discussed.