932 resultados para Haptoglobin polymorphism
Resumo:
Objective. HLA-DRB1, a major genetic determinant of susceptibility to rheumatoid arthritis (RA), is located within 1,000 kb of the gene encoding tumor necrosis factor (TNF). Because certain HLA-DRB1*04 subtypes increase susceptibility to RA, investigation of the role of the TNF gene is complicated by linkage disequilibrium (LD) between TNF and DRB1 alleles. By adequately controlling for this LD, we aimed to investigate the presence of additional major histocompatibility complex (MHC) susceptibility genes. Methods. We identified 274 HLA-DRB1*04-positive cases of RA and 271 HLA-DRB1*04-positive population controls. Each subject was typed for 6 single-nucleotide polymorphisms within a 4.5-kb region encompassing TNF and lymphotoxin a (LTA). LTA-TNF haplotypes in these unrelated individuals were determined using a combination of family data and the PHASE software program. Results. Significant differences in LTA-TNF haplotype frequencies were observed between different subtypes of HLA-DRB1*04. The LTA-TNF haplotypes observed were very restricted, with only 4 haplotypes constituting 81% of all haplotypes present. Among individuals carrying DRB1*0401, the LTA-TNF 2 haplotype was significantly underrepresented in cases compared with controls (odds ratio 0.5 [95% confidence interval 0.3-0.8], P = 0.007), while in those with DRB1*0404, the opposite effect was observed (P = 0.007). Conclusion. These findings suggest that the MHC contains genetic elements outside the LTA-TNF region that modify the effect of HLA-DRB1 on susceptibility to RA.
Resumo:
Objective. We have previously identified a single-nucleotide polymorphism (SNP) haplotype involving the lymphotoxin α (LTA) and tumor necrosis factor (TNF) loci (termed haplotype LTA-TNF2) on chromosome 6 that shows differential association with rheumatoid arthritis (RA) on HLA-DRB1*0404 and *0401 haplotypes, suggesting the presence of additional non-HLA-DRB1 RA susceptibility genes on these haplotypes. To refine this association, we performed a case-control association study using both SNPs and microsatellite markers in haplotypes matched either for HLA-DRB1*0404 or for HLA-DRB1*0401. Methods. Fourteen SNPs lying between HLA-DRB1 and LTA were genotyped in 87 DRB1*04-positive families. High-density microsatellite typing was performed using 24 markers spanning 2,500 kb centered around the TNF gene in 305 DRB1*0401 or *0404 cases and 400 DRB1*0401 or *0404 controls. Single-marker, 2-marker, and 3-marker minihaplotypes were constructed and their frequencies compared between the DRB1*0401 and DRB1*0404 matched case and control haplotypes. Results. Marked preservation of major histocompatibility complex haplotypes was seen, with chromosomes carrying LTA-TNF2 and either DRB1*0401 or DRB1*0404 both carrying an identical SNP haplotype across the 1-Mb region between TNF and HLA-DRB1. Using microsatellite markers, we observed two 3-marker minihaplotypes that were significantly overrepresented in the DRB1*0404 case haplotypes (P = 0.00024 and P = 0.00097). Conclusion. The presence of a single extended SNP haplotype between LTA-TNF2 and both DRB1*0401 and DRB1*0404 is evidence against this region harboring the genetic effects in linkage disequillbrium with LTA-TNF2. Two RA-associated haplotypes on the background of DRB1*0404 were identified in a 126-kb region surrounding and centromeric to the TNF locus.
Resumo:
We thank Ploski and colleagues for their interest in our study. The explanation for the difference in our findings is a typographic error in Table 2 of our article, whereby the alleles for marker TNF ⫺1031 were labeled incorrectly...
Resumo:
Objective The ank/ank mouse develops a phenotype similar to ankylosing spondylitis (AS) in humans. ANKH, the human homolog of the mutated gene in the ank/ank mouse, has been implicated in familial autosomal-dominant chondrocalcinosis and autosomal-dominant craniometaphyseal dysplasia. This study was undertaken to investigate the role of ANKH in susceptibility to and clinical manifestations of AS. Methods Sequence variants were identified by genomic sequencing of the 12 ANKH exons and their flanking splice sites in 48 AS patients; variants were then screened in 233 patients and 478 controls. Linkage to the ANKH locus was assessed in 185 affected-sibling-pair families. Results Five single-nucleotide polymorphisms were identified within the coding region and flanking splice sites. No association between either susceptibility to AS or its clinical manifestations and these novel polymorphisms, or between disease susceptibility and 3 known promoter variants, was seen. No linkage between the ANKH locus and AS was observed. Multipoint exclusion mapping rejected the hypothesis of a locus of a magnitude λ≥1.4 (logarithm of odds score <-2) (equivalent to a genetic contribution of >10% to the AS sibling recurrence risk ratio) within this area contributing to AS. Conclusion These findings indicate that ANKH is not significantly involved in susceptibility to or clinical manifestations of AS.
Resumo:
Objective Certain mutations in ANKH, which encodes a multiple-pass transmembrane protein that regulates inorganic pyrophosphate (PPi) transport, are linked to autosomal-dominant familial chondrocalcinosis. This study investigated the potential for ANKH sequence variants to promote sporadic chondrocalcinosis. Methods ANKH variants identified by genomic sequencing were screened for association with chondrocalcinosis in 128 patients with severe sporadic chondrocalcinosis or pseudogout and in ethnically matched healthy controls. The effects of specific variants on expression of common markers were evaluated by in vitro transcription/translation. The function of these variants was studied in transfected human immortalized CH-8 articular chondrocytes. Results Sporadic chondrocalcinosis was associated with a G-to-A transition in the ANKH 5′-untranslated region (5′-UTR) at 4 bp upstream of the start codon (in homozygotes of the minor allele, genotype relative risk 6.0, P = 0.0006; overall genotype association P = 0.02). This -4-bp transition, as well as 2 mutations previously linked with familial and sporadic chondrocalcinosis (+14 bp C-to-T and C-terminal GAG deletion, respectively), but not the French familial chondrocalcinosis kindred 143-bp T-to-C mutation, increased reticulocyte ANKH transcription/ANKH translation in vitro. Transfection of complementary DNA for both the wild-type ANKH and the -4-bp ANKH protein variant promoted increased extracellular PPi in CH-8 cells, but unexpectedly, these ANKH mutants had divergent effects on the expression of extracellular PPi and the chondrocyte hypertrophy marker, type X collagen. Conclusion A subset of sporadic chondrocalcinosis appears to be heritable via a -4-bp G-to-A ANKH 5′-UTR transition that up-regulates expression of ANKH and extracellular PPi in chondrocyte cells. Distinct ANKH mutations associated with heritable chondrocalcinosis may promote disease by divergent effects on extracellular PPi and chondrocyte hypertrophy, which is likely to mediate differences in the clinical phenotypes and severity of the disease.
Resumo:
Objective To investigate differences in genetic risk factors for rheumatoid arthritis (RA) in Han Chinese as compared with Europeans. Methods A genome-wide association study was conducted in China with 952 patients and 943 controls, and 32 variants were followed up in 2,132 patients and 2,553 controls. A transpopulation meta-analysis with results from a large European RA study was also performed to compare the genetic architecture across the 2 ethnic remote populations. Results Three non-major histocompatibility complex (non-MHC) loci were identified at the genome-wide significance level, the effect sizes of which were larger in anti-citrullinated protein antibody (ACPA)-positive patients than in ACPA-negative patients. These included 2 novel variants, rs12617656, located in an intron of DPP4 (odds ratio [OR] 1.56, P = 1.6 × 10 -21), and rs12379034, located in the coding region of CDK5RAP2 (OR 1.49, P = 1.1 × 10-16), as well as a variant at the known CCR6 locus, rs1854853 (OR 0.71, P = 6.5 × 10-15). The analysis of ACPA-positive patients versus ACPA-negative patients revealed that rs12617656 at the DPP4 locus showed a strong interaction effect with ACPAs (P = 5.3 × 10-18), and such an interaction was also observed for rs7748270 at the MHC locus (P = 5.9 × 10-8). The transpopulation meta-analysis showed genome-wide overlap and enrichment in association signals across the 2 populations, as confirmed by prediction analysis. Conclusion This study has expanded the list of alleles that confer risk of RA, provided new insight into the pathogenesis of RA, and added empirical evidence to the emerging polygenic nature of complex trait variation driven by common genetic variants. Copyright © 2014 by the American College of Rheumatology.
Resumo:
Objective Several genetic risk variants for ankylosing spondylitis (AS) have been identified in genome-wide association studies. Our objective was to examine whether familial AS cases have a higher genetic load of these susceptibility variants. Methods Overall, 502 AS patients were examined, consisting of 312 patients who had first-degree relatives (FDRs) with AS (familial) and 190 patients who had no FDRs with AS or spondylarthritis (sporadic). All patients and affected FDRs fulfilled the modified New York criteria for AS. The patients were recruited from 2 US cohorts (the North American Spondylitis Consortium and the Prospective Study of Outcomes in Ankylosing Spondylitis) and from the UK-Oxford cohort. The frequencies of AS susceptibility loci in IL-23R, IL1R2, ANTXR2, ERAP-1, 2 intergenic regions on chromosomes 2p15 and 21q22, and HLA-B27 status as determined by the tag single-nucleotide polymorphism (SNP) rs4349859 were compared between familial and sporadic cases of AS. Association between SNPs and multiplex status was assessed by logistic regression controlling for sibship size. Results HLA-B27 was significantly more prevalent in familial than sporadic cases of AS (odds ratio 4.44 [95% confidence interval 2.06, 9.55], P = 0.0001). Furthermore, the AS risk allele at chromosome 21q22 intergenic region showed a trend toward higher frequency in the multiplex cases (P = 0.08). The frequency of the other AS risk variants did not differ significantly between familial and sporadic cases, either individually or combined. Conclusion HLA-B27 is more prevalent in familial than sporadic cases of AS, demonstrating higher familial aggregation of AS in patients with HLA-B27 positivity. The frequency of the recently described non-major histocompatibility complex susceptibility loci is not markedly different between the sporadic and familial cases of AS.
Resumo:
The advent of high-throughput SNP genotyping methods has advanced research into the genetics of common complex genetic diseases such as ankylosing spondylitis (AS) rapidly in recent times. The identification of associations with the genes IL23R and ERAP1 have been robustly replicated, and advances have been made in studies of the major histocompatibility complex genetics of AS, and of KIR gene variants and the disease. The findings are already being translated into increased understanding of the immunological pathways involved in AS, and raising novel potential therapies. The current studies in AS remain underpowered, and no full genomewide association study has yet been reported in AS; such studies are likely to add to the significant advances that have already been made.
Resumo:
Introduction: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptor molecules. High concentrations of three of its putative proinflammatory ligands, S100A8/A9 complex (calprotectin), S100A8, and S100A12, are found in rheumatoid arthritis (RA) serum and synovial fluid. In contrast, soluble RAGE (sRAGE) may prevent proinflammatory effects by acting as a decoy. This study evaluated the serum levels of S100A9, S100A8, S100A12 and sRAGE in RA patients, to determine their relationship to inflammation and joint and vascular damage. Methods: Serum sRAGE, S100A9, S100A8 and S100A12 levels from 138 patients with established RA and 44 healthy controls were measured by ELISA and compared by unpaired t test. In RA patients, associations with disease activity and severity variables were analyzed by simple and multiple linear regressions. Results: Serum S100A9, S100A8 and S100A12 levels were correlated in RA patients. S100A9 levels were associated with body mass index (BMI), and with serum levels of S100A8 and S100A12. S100A8 levels were associated with serum levels of S100A9, presence of anti-citrullinated peptide antibodies (ACPA), and rheumatoid factor (RF). S100A12 levels were associated with presence of ACPA, history of diabetes, and serum S100A9 levels. sRAGE levels were negatively associated with serum levels of C-reactive protein (CRP) and high-density lipoprotein (HDL), history of vasculitis, and the presence of the RAGE 82Ser polymorphism. Conclusions: sRAGE and S100 proteins were associated not just with RA inflammation and autoantibody production, but also with classical vascular risk factors for end-organ damage. Consistent with its role as a RAGE decoy molecule, sRAGE had the opposite effects to S100 proteins in that S100 proteins were associated with autoantibodies and vascular risk, whereas sRAGE was associated with protection against joint and vascular damage. These data suggest that RAGE activity influences co-development of joint and vascular disease in rheumatoid arthritis patients.
Resumo:
Genomewide association studies (GWAS) have proven a powerful hypothesis-free method to identify common disease-associated variants. Even quite large GWAS, however, have only at best identified moderate proportions of the genetic variants contributing to disease heritability. To provide cost-effective genotyping of common and rare variants to map the remaining heritability and to fine-map established loci, the Immunochip Consortium has developed a 200,000 SNP chip that has been produced in very large numbers for a fraction of the cost of GWAS chips. This chip provides a powerful tool for immunogenetics gene mapping.
Resumo:
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-1 gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-1A. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
In stark contrast to its horticultural origins, modern genetics is an extremely technology-driven field. Almost all the major advances in the field over the past 20 years have followed technological developments that have permitted change in study designs. The development of PCR in the 1980s led to RFLP mapping of monogenic diseases. The development of fluorescent-tagged genotyping methods led to linkage mapping approaches for common diseases that dominated the 1990s. The development of microarray SNP genotyping has led to the genome-wide association study era of the new millennium. And now the development of next-generation sequencing technologies is about to open up a new era of gene-mapping, enabling many potential new study designs. This review aims to present the strengths and weaknesses of the current approaches, and present some new ideas about gene-mapping approaches that are likely to advance our knowledge of the genes involved in heritable bone traits such as bone mineral density (BMD) and fracture.
Resumo:
Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5×10-8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10-8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98-1.14; p=0.17), displaying high degree of heterogeneity (I2=57%; Qhet p=0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p=0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.
Resumo:
Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthropathy. In addition to being strongly associated with HLA-B27, a further 13 genes have been robustly associated with the disease. These genes highlight the involvement of the IL-23 pathway in disease pathogenesis, and indicate overlaps between the pathogenesis of AS, and of inflammatory bowel disease. Genetic associations in B27-positive and -negative disease are similar, with the main exception of association with ERAP1, which is restricted in association to B27-positive cases. This restriction, and the known function of ERAP1 in peptide trimming prior to HLA Class I presentation, indicates that HLA-B27 is likely to operate in AS by a mechanism involving aberrant peptide handling. These advances point to several potential novel therapeutic approaches in AS.