967 resultados para HIGH-PRESSURES
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR βgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin- aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.
Resumo:
A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.
Resumo:
The Independent Music Project is centred around the development and creation of new music, and includes research into copyright, business models of the future, new technologies, and new audiences. The music industry is undergoing the most radical changes it has faced in almost a century. New digital technologies have made the production, distribution, and promotion of recorded music accessible to anyone with a personal computer. People can now make high-quality digital copies of music and distribute them globally within minutes. Even bastions of the established industries, such as EMI and Columbia, are struggling to make sense of the new industry terrain. The whole employment picture has changed just as radically for people who wish to make a living from music. In Australia, many of the avenues that provided employment for musicians have either disappeared or dramatically shrunk. The advertising industry no longer provides the level of employment it used to prior to the Federal deregulation of the industry in 1992. In many places, new legislative pressures on inner-city and suburban venues have diminished the number of performance spaces that musicians can work in. Just as quickly, new sectors have opened to professional musicians: computer games, ringtones, sound-enabled toys and web advertising all present new opportunities to the enterprising musician. The opportunity to distribute music internationally without being signed to a major label is very attractive to many aspiring and established professionals. No doubt the music industry will face many more challenges as technologies continue to change, as global communication gets easier and faster, and as the challenges to copyright proliferate and change. These challenges cannot be successfully met on a single front. They require research and expertise from all sectors being affected, and this is why the independent music project (IMP) exists.
Resumo:
The Independent Music Project is centred around the development and creation of new music, and includes research into copyright, business models of the future, new technologies, and new audiences. The music industry is undergoing the most radical changes it has faced in almost a century. New digital technologies have made the production, distribution, and promotion of recorded music accessible to anyone with a personal computer. People can now make high-quality digital copies of music and distribute them globally within minutes. Even bastions of the established industries, such as EMI and Columbia, are struggling to make sense of the new industry terrain. The whole employment picture has changed just as radically for people who wish to make a living from music. In Australia, many of the avenues that provided employment for musicians have either disappeared or dramatically shrunk. The advertising industry no longer provides the level of employment it used to prior to the Federal deregulation of the industry in 1992. In many places, new legislative pressures on inner-city and suburban venues have diminished the number of performance spaces that musicians can work in. Just as quickly, new sectors have opened to professional musicians: computer games, ringtones, sound-enabled toys and web advertising all present new opportunities to the enterprising musician. The opportunity to distribute music internationally without being signed to a major label is very attractive to many aspiring and established professionals. No doubt the music industry will face many more challenges as technologies continue to change, as global communication gets easier and faster, and as the challenges to copyright proliferate and change. These challenges cannot be successfully met on a single front. They require research and expertise from all sectors being affected, and this is why the independent music project (IMP) exists.
Resumo:
The Independent Music Project is centred around the development and creation of new music, and includes research into copyright, business models of the future, new technologies, and new audiences. The music industry is undergoing the most radical changes it has faced in almost a century. New digital technologies have made the production, distribution, and promotion of recorded music accessible to anyone with a personal computer. People can now make high-quality digital copies of music and distribute them globally within minutes. Even bastions of the established industries, such as EMI and Columbia, are struggling to make sense of the new industry terrain. The whole employment picture has changed just as radically for people who wish to make a living from music. In Australia, many of the avenues that provided employment for musicians have either disappeared or dramatically shrunk. The advertising industry no longer provides the level of employment it used to prior to the Federal deregulation of the industry in 1992. In many places, new legislative pressures on inner-city and suburban venues have diminished the number of performance spaces that musicians can work in. Just as quickly, new sectors have opened to professional musicians: computer games, ringtones, sound-enabled toys and web advertising all present new opportunities to the enterprising musician. The opportunity to distribute music internationally without being signed to a major label is very attractive to many aspiring and established professionals. No doubt the music industry will face many more challenges as technologies continue to change, as global communication gets easier and faster, and as the challenges to copyright proliferate and change. These challenges cannot be successfully met on a single front. They require research and expertise from all sectors being affected, and this is why the independent music project (IMP) exists.
Resumo:
The Independent Music Project is centred around the development and creation of new music, and includes research into copyright, business models of the future, new technologies, and new audiences. The music industry is undergoing the most radical changes it has faced in almost a century. New digital technologies have made the production, distribution, and promotion of recorded music accessible to anyone with a personal computer. People can now make high-quality digital copies of music and distribute them globally within minutes. Even bastions of the established industries, such as EMI and Columbia, are struggling to make sense of the new industry terrain. The whole employment picture has changed just as radically for people who wish to make a living from music. In Australia, many of the avenues that provided employment for musicians have either disappeared or dramatically shrunk. The advertising industry no longer provides the level of employment it used to prior to the Federal deregulation of the industry in 1992. In many places, new legislative pressures on inner-city and suburban venues have diminished the number of performance spaces that musicians can work in. Just as quickly, new sectors have opened to professional musicians: computer games, ringtones, sound-enabled toys and web advertising all present new opportunities to the enterprising musician. The opportunity to distribute music internationally without being signed to a major label is very attractive to many aspiring and established professionals. No doubt the music industry will face many more challenges as technologies continue to change, as global communication gets easier and faster, and as the challenges to copyright proliferate and change. These challenges cannot be successfully met on a single front. They require research and expertise from all sectors being affected, and this is why the independent music project (IMP) exists.
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.
Green tea attenuates cardiovascular remodelling and metabolic symptoms in high carbohydrate-fed rats