983 resultados para HERPES-LIKE VIRUS
Resumo:
ISCOMs(R) are typically 40 nm cage-like structures comprising antigen, saponin, cholesterol and phospholipid. ISCOMs(R) have been shown to induce antibody responses and activate T helper cells and cyrolytic T lymphocytes in a number of animal species, including non-human primates. Recent clinical studies have demonstrated that ISCOMs(R) are also able to induce antibody and cellular immune responses in humans. This review describes the current understanding of the ability of ISCOMs(R) to induce immune responses and the mechanisms underlying this property. Recent progress in the characterisation and manufacture of ISCOMs(R) will also be discussed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In a previous study eight MHC class I-matched sheep were vaccinated with a minimal cytotoxic T lymphocyte (CTL) peptide epitope vaccine and were challenged with the retrovirus, bovine leukemia virus (BLV). Half the vaccinated animals remained PCR negative after challenge, whereas the remaining half and the placebo group became PCR positive within 4 weeks postchallenge (Hislop AD, Good MF, Mateo L, Gardner J, Gatei MH, Daniel RCW, Meyers BV, Lavin MF, and Suhrbier A: Nat Med 1998; 4: 1193). Here we show that neither epitope mutations nor processing differences explained why half the peptide-vaccinated animals failed to resist the BLV challenge. However, in these animals the development of BLV-induced lymphosarcomas was significantly delayed compared with the placebo group, suggesting a role for CTLs in preventing retrovirus-induced cancers. Importantly, two of the initially protected animals become PCR positive after similar to1.5 years, indicating extended suppression but not elimination of challenge virus by vaccine-induced CTLs. The late emergence of virus could not be explained by epitope escape mutations or the loss of memory CTL responses. We speculate that high levels of effector CTL may be needed to protect animals from a postchallenge viremia and maintenance of such effector CTLs, rather than memory CTLs, may be required to prevent subsequent emergence of virus from latent pools.
Resumo:
The specification of the erythroid lineage from hematopoietic stem cells requires the expression and activity of lineage-specific transcription factors. One transcription factor family that has several members involved in hematopoiesis is the Kruppel-like factor (KLF) family [1]. For example, erythroid KLF (EKLF) regulates beta -globin expression during erythroid differentiation [2-6]. KLFs share a highly conserved zinc finger-based DNA binding domain (DBD) that mediates binding to CACCC-box and GC-rich sites, both of which are frequently found in the promoters of hematopoietic genes. Here, we identified a novel Xenopus KLF gene, neptune, which is highly expressed in the ventral blood island (VBI), cranial ganglia, and hatching and cement glands. neptune expression is induced in response to components of the BMP-4 signaling pathway in injected animal cap explants. Similar to its family member, EKLF, Neptune can bind CACCC-box and GC-rich DNA elements. We show that Neptune cooperates with the hematopoietic transcription factor XGATA-1 to enhance globin induction in animal cap explants. A fusion protein comprised of Neptune's DBD and the Drosophila engrailed repressor domain suppresses the induction of globin in ventral marginal zones and in animal caps. These studies demonstrate that Neptune is a positive regulator of primitive erythropoiesis in Xenopus.
Resumo:
We report on a patient with a severe premature calvarial synostosis and epidermal hyperplasia. The phenotype was consistent with that of a mild presentation of Beare-Stevenson syndrome but molecular analysis of the IgIII-transmembrane linker region and the transmembrane domain of the gene encoding the FGFR2 receptor, revealed wild-type sequence only. Subsequently, molecular analysis of the FGFR3 receptor gene identified a heterozygous P250R missense mutation in both the proposita and her mildly affected father. This communication extends the clinical spectrum of the FGFR3 P250R mutation to encompass epidermal hyperplasia and documents the phenomenon of activated FGFR receptors stimulating common downstream developmental pathways, resulting in overlapping clinical outcomes. (C) 2001 Wiley-Liss, Inc.
Resumo:
Background. Posttransplant lymphoproliferative disease (PTLD), driven by the presence of Epstein-Barr virus (EBV), is becoming an increasingly important clinical problem after solid organ transplantation. The use of immunosuppressive therapy leads to the inhibition of the cytotoxic T cells that normally control the EBV latently infected B cells. The prognosis for many patients with PTLD is poor, and the optimal treatment strategy is not well defined. Method. This study investigates the use of a histone deacetylase inhibitor, azelaic bishydroxamic acid (ABRA), for its ability to effectively kill EBV-transformed lymphoblastoid cell lines. Results. In vitro treatment of lymphoblastoid cell lines with ABRA showed that they were effectively killed by low doses of the drug (ID50 2-5 mug/ml) within 48 hr. As well as being effective against polyclonal B-cell lines, ABHA was also shown to be toxic to seven of eight clonal Burkitt's lymphoma cell lines, indicating that the drug may also be useful in the treatment of late-occurring clonal PTLD. In addition, ABHA treatment did not induce EBV replication or affect EBV latent gene expression. Conclusion. These studies suggest that ABHA effectively kills both polyclonal and clonal B-cell lines and has potential in the treatment of PTLD.
Route of administration of chimeric BPV1VLP determines the character of the induced immune responses
Resumo:
To examine the mucosal immune response to papillomavirus virus-like particles (PV-VLP), mice were immunized with VLP intrarectally (i.r.), intravaginally (i.va.) or intramuscularly (i.m.) without adjuvant. PV-VLP were assembled with chimeric BPV-1 L1 proteins incorporating sequence from HIV-1 gp 120, either the V3 loop or a shorter peptide incorporating a known CTL epitope (HIVP18I10). Antibody specific for BPV-1 VLP and P18 peptide was detected in serum following i.m., but not i.r. or i.va. immunization. Denatured VLP induced a much reduced immune response when compared with native VLP, Immune responses following mucosal administration of VLP were generally weaker than following systemic administration. VLP specific IgA was higher in intestine washes following i.r. than i.va. immunization, and higher in vaginal washes following i.m. than i.r. or i.va. immunization. No differences in specific antibody responses were seen between animals immunized with BPV-1 P18 VLP or with BPV-1 V3 VLP. Cytotoxic T lymphocyte precursors specific for the P18 CTL epitope were recovered from the spleen following i.m., i.va. or i.r. immunization with P18 VLP, and were similarly detected in Peyer's patches following i.m. or i.r. immunization. Thus, mucosal or systemic immunization with PV VLP induces mucosal CTL responses and this may be important for vaccines for mucosal infection with human papillomaviruses and for other viruses.
Resumo:
We recently demonstrated that Saccharomyces cerevisiae protoplasts can take up bovine papillomavirus type 1 (BPV1) virions and that viral episomal DNA is replicated after uptake. Here we demonstrate that BPV virus-like particles are assembled in infected S. cerevisiae cultures from newly synthesized capsid proteins and also package newly synthesized DNA, including full-length and truncated viral DNA and S. cerevisiae-derived DNA. Virus particles prepared in S. cerevisiae are able to convey packaged DNA to Cos1 cells and to transform C127 cells. Infectivity was blocked by antisera to BPV1 L1 but not antisera to BPV1 E4. We conclude that S. cerevisiae is permissive for the replication of BPV1 virus.
Resumo:
In this study we report on the isolation and characterization of a nonepithelial, nontumorigenic cell type (BCC1) derived from a basal cell carcinoma from a patient. The BCC1 cells share many characteristics with dermal fibroblasts, such as the expression of vimentin, lack of expression of cytokeratins, and insensitivity to agents that cause growth inhibition and differentiation of epithelial cells; however, significant differences between BCC1 cells and fibroblasts also exist. For example, BCC1 cells are stimulated to undergo DNA synthesis in response to interferon-gamma, whereas dermal fibroblasts are not. More over, BCC1 cells overexpress the basal cell carcinoma-specific genes ptch and ptch2 . These data indicate that basal cell carcinomas are associated with a functionally distinct population of fibroblast-like cells that overexpress known tumor-specific markers (ptch and ptch2 ).
Resumo:
Previous studies have shown that Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) is uniquely able to up-regulate the expression of the peptide transporters (referred to as TAP-1 and TAP-2) and major histocompatibility complex (MHC) class I in Burkitt's lymphoma (BL) cell lines. This up-regulation is often accompanied by a restoration of antigen-presenting function as measured by the ability of these cells to present endogenously expressed viral antigen to cytotoxic T lymphocytes. Here we show that the expression of LMP1 resulted in up-regulation and nuclear translocation of RelB that were coincident with increased expression of MHC class I in BL cells. Deletion of the C-terminal activator regions (CTARs) of LMP1 significantly impaired the abilities of LMP1 to translocate RelB into the nucleus and to up-regulate the expression of antigen-processing genes. Further analysis with single-point mutations within the CTARs confirmed that the residues critical for NF-kappaB activation directly contribute to antigen-processing function regulation in BL cells. This LMP1-mediated effect was blocked following expression of either dominant negative IkappaBalpha S32/36A, an NF-kappaB inhibitor, or antisense RelB. These observations indicate that upregulation of antigen-presenting function in B cells mediated by LMP1 is signaled through the NF-kappaB subunit RelB. The data provide a mechanism by which LMP1 modulates immunogenicity of Epstein-Barr virus-infected normal and malignant cells.
Resumo:
Aim: To establish the histological categorization of fibrotic stroma which reflects the biological behaviour of advanced rectal cancer. Methods and results: Six hundred and twenty-seven surgically resected cases of advanced rectal carcinoma were examined. We histologically categorized fibrotic stroma in the invasive frontal region into three groups: type A, multiple fine and mature fibres were stratified into layers: type B, broad bands of eosinophilic hyalinized collagen ('keloid-like' collagen) were intermingled: type C, myxoid stroma. Type A stroma was observed in 63% of patients, type B stroma in 25%, type C stroma in 12%.. The incidence of type A stroma decreased in accordance with Dukes stage (98% in Dukes A: 73% in B: 41%, in C1: 29% in C2) and conversely, there was an increase of C type (0%, in Dukes A; 4%, in B: 20% in C1: 54% in C2). Stroma type had a significant correlation with long-term survival (80% of 5-year survival in type A stroma: 54% in type B: 26% in type C). Based on multivariate analysis. it was found that the stromal pattern had independent prognostic value, together with nodal involvement. growth pattern. and lymphocyte infiltration. Conclusions: Tumour fibrotic stroma may play an important role as a regulator of neoplastic behaviour. Pathological categorization of the fibrotic stroma is helpful for predicting the prognostic outcome of patients with rectal carcinoma.
Resumo:
We have previously reported successful trans-complementation of defective Kunjin virus genomic RNAs with a range of large lethal deletions in the nonstructural genes NSI, NS3, and NS5 (A. A. Khromykh et al., J. Virol. 74:3253-3263, 2000). In this study we have mapped further the minimal region in the NS5 gene essential for efficient trans-complementation of genome-length RNAs in repBHK cells to the first 316 of the 905 codons. To allow amplification and easy detection of complemented defective RNAs with deletions apparently affecting virus assembly, we have developed a dual replicon complementation system. In this system defective replicon RNAs with a deletion(s) in the nonstructural genes also encoded the puromycin resistance gene (PAC gene) and the reporter gene for beta-galactosidase (beta-Gal). Complementation of these defective replicon RNAs in repBHK cells resulted in expression of PAC and beta-Gal which allowed establishment of cell lines stably producing replicating defective RNAs by selection with puromycin and comparison of replication efficiencies of complemented defective RNAs by beta-Gal assay. Using this system we demonstrated that deletions in the C-terminal 434 codons of NS3 (codons 178 to 611) were complemented for RNA replication, while any deletions in the first 178 codons were not. None of the genome-length RNAs containing deletions in NS3 shown to be complementable for RNA replication produced secreted defective viruses during complementation in repBHK cells. In contrast, structural proteins produced from these complemented defective RNAs were able to package helper replicon RNA. The results define minimal regions in the NS3 and NS5 genes essential for the formation of complementable replication complex and show a requirement of NS3 in cis for virus assembly.
Resumo:
Laboratory diagnosis of human respiratory syncytial virus (hRSV) infections has traditionally been performed by virus isolation in cell culture and the direct fluorescent-antibody assay (DFA). Reverse transcriptase PCR (RT-PCR) is now recognized as a sensitive and specific alternative for detection of hRSV in respiratory samples. Using the LightCycler instrument, we developed a rapid RT-PCR assay for the detection of hRSV (the LC-RT-PCR) with a pair of hybridization probes that target the hRSV L gene. In the present study, 190 nasopharyngeal aspirate samples from patients with clinically recognized respiratory tract infections were examined for hRSV. The results were then compared to the results obtained with a testing algorithm that combined DFA and a culture-augmented DFA (CA-DFA) assay developed in our laboratory. hRSV was detected in 77 (41%) specimens by LC-RT-PCR and in 75 (39%) specimens by the combination of DFA and CA-DFA. All specimens that were positive by the DFA and CA-DFA testing algorithm were positive by the LC-RT-PCR. The presence of hRSV RNA in the two additional LC-RT-PCR-positive specimens was confirmed by a conventional RT-PCR method that targets the hRSV N gene. The sensitivity of LC-RT-PCR was 50 PFU/ml; and this, together with its high specificity and rapid turnaround time, makes the LC-RT-PCR suitable for the detection of hRSV in clinical specimens.
Resumo:
The tat gene is required by HIV-1 for efficient reverse transcription and this function of Tat can be distinguished from its role in transcription by RNA polymerase II using tat point mutations that abrogate each function independently The mechanism of Tat's role in reverse transcription, however, is not known, nor is it known whether this role is conserved among trans-activating factors in other retroviruses. Here we examine the abilities of heterologous viral trans-activating proteins from jembrana disease virus (jTat), HIV-2 (Tat2), and equine infectious anemia virus (eTat) to substitute for HIV-1 Tat (Tat1) and restore reverse transcription in HIV-1 carrying an inactivated tat gene. Natural endogenous reverse transcription assays showed that trans-activators from some retroviruses (Tat2 and jTat, but not eTat) could substitute for Tat1 in complementation of HIV-1 reverse transcription. Finally, we show that Y47 is critical for Tat1 to function in reverse transcription, but not HIV-1 gene expression. We mutated the homologous position in jTat to H62Y and found it did not improve its ability to stimulate reverse transcription, but an H62A mutation did inhibit jTat complementation. These data highlight the finding that the role of Tat in reverse transcription is not related to trans-activation and demonstrate that other tat genes conserve this function. (C) 2002 Elsevier Science (USA).