869 resultados para Gustatory Cortex


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The changes in internal states, such as fear, hunger and sleep affect behavioral responses in animals. In most of the cases, these state-dependent influences are “pleiotropic”: one state affects multiple sensory modalities and behaviors; “scalable”: the strengths and choices of such modulations differ depending on the imminence of demands; and “persistent”: once the state is switched on the effects last even after the internal demands are off. These prominent features of state-control enable animals to adjust their behavioral responses depending on their internal demands. Here, we studied the neuronal mechanisms of state-controls by investigating energy-deprived state (hunger state) and social-deprived state of fruit flies, Drosophila melanogaster, as prototypic models. To approach these questions, we developed two novel methods: a genetically based method to map sites of neuromodulation in the brain and optogenetic tools in Drosophila.

These methods, and genetic perturbations, reveal that the effect of hunger to alter behavioral sensitivity to gustatory cues is mediate by two distinct neuromodulatory pathways. The neuropeptide F (NPF) – dopamine (DA) pathway increases sugar sensitivity under mild starvation, while the adipokinetic hormone (AKH)- short neuropeptide F (sNPF) pathway decreases bitter sensitivity under severe starvation. These two pathways are recruited under different levels of energy demands without any cross interaction. Effects of both of the pathways are mediated by modulation of the gustatory sensory neurons, which reinforce the concept that sensory neurons constitute an important locus for state-dependent control of behaviors. Our data suggests that multiple independent neuromodulatory pathways are underlying pleiotropic and scalable effects of the hunger state.

In addition, using optogenetic tool, we show that the neural control of male courtship song can be separated into probabilistic/biasing, and deterministic/command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, supporting the idea that they constitute a locus of state-dependent influence. Interestingly, moreover, brief activation of the former, but not the latter, neurons trigger persistent behavioral response for more than 10 min. Altogether, these findings and new tools described in this dissertation offer new entry points for future researchers to understand the neuronal mechanism of state control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The olfactory bulb of mammals aids in the discrimination of odors. A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations of the highly non-linear model produce a 35-60 Hz modulated activity, which is coherent across the bulb. The decision states (for the odor information) in this system can be thought of as stable cycles, rather than as point stable states typical of simpler neuro-computing models. Analysis shows that a group of coupled non-linear oscillators are responsible for the oscillatory activities. The output oscillation pattern of the bulb is determined by the odor input. The model provides a framework in which to understand the transformation between odor input and bulbar output to the olfactory cortex. This model can also be extended to other brain areas such as the hippocampus, thalamus, and neocortex, which show oscillatory neural activities. There is significant correspondence between the model behavior and observed electrophysiology.

It has also been suggested that the olfactory bulb, the first processing center after the sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity enhancement by motivation, and other olfactory psychophysical phenomena. The input from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able to modulate the response, and thus the sensitivity, of the bulb to odor input. It follows that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) while remaining sensitive to new odors, or can increase its sensitivity to discover interesting new odors. Other olfactory psychophysical phenomena such as cross-adaptation are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental question in neuroscience is how distributed networks of neurons communicate and coordinate dynamically and specifically. Several models propose that oscillating local networks can transiently couple to each other through phase-locked firing. Coherent local field potentials (LFP) between synaptically connected regions is often presented as evidence for such coupling. The physiological correlates of LFP signals depend on many anatomical and physiological factors, however, and how the underlying neural processes collectively generate features of different spatiotemporal scales is poorly understood. High frequency oscillations in the hippocampus, including gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz) during immobility or slow wave sleep, have each been associated with various aspects of learning and memory. Deciphering their physiology and functional consequences is crucial to understanding the operation of the hippocampal network.

We investigated the origins and coordination of high frequency LFPs in the hippocampo-entorhinal network using both biophysical models and analyses of large-scale recordings in behaving and sleeping rats. We found that the synchronization of pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this synchrony are still unresolved, but they appear to also affect CA1 activity during theta oscillations. The input to CA1, which often arrives in the form of gamma-frequency waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with local network interactions governing pyramidal cells' spike timing during the integration of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the theta cycle matched that found in previous work to engage mechanisms for synapse modification and active dendritic processes. Our work demonstrates how local networks interact with upstream inputs to generate a coordinated hippocampal output during behavior and sleep, in the form of theta-gamma coupling and SWRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O consumo de etanol durante a gestação é um grave problema de saúde pública. Durante o desenvolvimento, o sistema nervoso é especialmente susceptível aos efeitos tóxicos do etanol e a exposição ao etanol durante este período pode gerar um amplo espectro de distúrbios neurocomportamentais, sendo o mais frequente, a hiperatividade. Recentemente, estudos têm sugerido que distúrbios na plasticidade neuronal podem estar relacionados com a hiperatividade. Os inibidores de PDE são drogas que agem impedindo a degradação de segundos mensageiros celulares como AMPc e GMPc, mantendo a ativação de proteínas quinases e de fatores de transcrição como o CREB, levando a expressão de genes relacionados à plasticidade. Neste trabalho, avaliamos através do teste de campo aberto se a administração de Vinpocetina ou Rolipram (inibidores de PDE) seria capaz de amenizar ou reverter a hiperatividade de camundongos Suíços expostos ao etanol no período correspondente ao terceiro trimestre de gestação humana. Para tanto, foram realizadas duas etapas: na primeira etapa, durante o período neonatal, os animais receberam injeções intraperitoneais de etanol (5g/Kg em solução salina a 25%, no 2, 4, 6 e 8 dias de vida pós-natal - PN2 a PN8) ou de salina, e 4 horas antes do teste comportamental no campo aberto (10 min), em PN30, receberam Vinpocetina (10mg/Kg ou 20mg/Kg diluídas em DMSO ip) ou somente DMSO ip. Na segunda etapa, os animais foram expostos ao etanol ou à salina no período neonatal nas mesmas condições da primeira etapa e no dia do teste comportamental receberam Rolipram (0,5mg/Kg diluídas em DMSO ip ou somente DMSO ip). Posteriormente aos testes, foram coletados o córtex cerebral frontal e o hipocampo dos animais para avaliação dos níveis de AMPc. Os resultados comportamentais indicam que somente o tratamento com Vinpocetina (20mg/Kg) reverteu a hiperatividade de camundongos expostos ao etanol, resultado que não foi observado com o tratamento com Rolipram. Desta forma, a dosagem dos níveis de AMPc foi realizada apenas nos animais que receberam injeção de Vinpocetina (20mg/Kg). A exposição neonatal ao etanol reduziu significativamente os níveis de AMPc no córtex e no hipocampo. O tratamento com Vinpocetina gerou um aumento nos níveis de AMPc no córtex e restaurou estes níveis no hipocampo. Nossos resultados sugerem que a reversão da hiperatividade pelo tratamento com Vinpocetina pode estar associada ao aumento da plasticidade neural induzida por esta droga.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner in which food and females promotes aggression.

In the first chapter, we explore how food controls aggression. As in many other species, food promotes aggression in flies, but it is not clear whether food increases aggression per se, or whether aggression is a secondary consequence of increased social interactions caused by aggregation of flies on food. Furthermore, nothing is known about how animals evaluate the quality and quantity of food in the context of competition. We show that food promotes aggression independently of any effect to increase the frequency of contact between males. Food increases aggression but not courtship between males, suggesting that the effect of food on aggression is specific. Next, we show that flies tune the level of aggression according to absolute amount of food rather than other parameters, such as area or concentration of food. Sucrose, a sugar molecule present in many fruits, is sufficient to promote aggression, and detection of sugar via gustatory receptor neurons is necessary for food-promoted aggression. Furthermore, we show that while food is necessary for aggression, too much food decreases aggression. Finally, we show that flies exhibit strategies consistent with a territorial strategy. These data suggest that flies use sweet-sensing gustatory information to guide their decision to fight over a limited quantity of a food resource.

Following up on the findings of the first chapter, we asked how the presence of a conspecific female resource promotes male-male aggression. In the absence of food, group-housed male flies, who normally do not fight even in the presence of food, fight in the presence of females. Unlike food, the presence of females strongly influences proximity between flies. Nevertheless, as group-housed flies do not fight even when they are in small chambers, it is unlikely that the presence of female indirectly increases aggression by first increasing proximity. Unlike food, the presence of females also leads to large increases in locomotion and in male-female courtship behaviors, suggesting that females may influence aggression as well as general arousal. Female cuticular hydrocarbons are required for this effect, as females that do not produce CH pheromones are unable to promote male-male aggression. In particular, 7,11-HD––a female-specific cuticular hydrocarbon pheromone critical for male-female courtship––is sufficient to mediate this effect when it is perfumed onto pheromone-deficient females or males. Recent studies showed that ppk23+ GRNs label two population of GRNs, one of which detects male cuticular hydrocarbons and another labeled by ppk23 and ppk25, which detects female cuticular hydrocarbons. I show that in particular, both of these GRNs control aggression, presumably via detection of female or male pheromones. To further investigate the ways in which these two classes of GRNs control aggression, I developed new genetic tools to independently test the male- and female-sensing GRNs. I show that ppk25-LexA and ppk25-GAL80 faithfully recapitulate the expression pattern of ppk25-GAL4 and label a subset of ppk23+ GRNs. These tools can be used in future studies to dissect the respective functions of male-sensing and female-sensing GRNs in male social behaviors.

Finally, in the last chapter, I discuss quantitative approaches to describe how varying quantities of food and females could control the level of aggression. Flies show an inverse-U shaped aggressive response to varying quantities of food and a flat aggressive response to varying quantities of females. I show how two simple game theoretic models, “prisoner’s dilemma” and “coordination game” could be used to describe the level of aggression we observe. These results suggest that flies may use strategic decision-making, using simple comparisons of costs and benefits.

In conclusion, male-male aggression in Drosophila is controlled by simple gustatory cues from food and females, which are detected by gustatory receptor neurons. Different quantities of resource cues lead to different levels of aggression, and flies show putative territorial behavior, suggesting that fly aggression is a highly strategic adaptive behavior. How these resource cues are integrated with male pheromone cues and give rise to this complex behavior is an interesting subject, which should keep researchers busy in the coming years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.

More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.

The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.

Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temporoammonic (TA) pathway is the direct, monosynaptic projection from layer III of entorhinal cortex to the distal dendritic region of area CA1 of the hippo­ campus. Although this pathway has been implicated in various functions, such as memory encoding and retrieval, spatial navigation, generation of oscillatory activity, and control of hippocampal excitability, the details of its physiology are not well understood. In this thesis, I examine the contribution of the TA pathway to hippocampal processing. I find that, as has been previously reported, the TA pathway includes both excitatory, glutamatergic components and inhibitory, GABAergic components. Several new discoveries are reported in this thesis. I show that the TA pathway is subject to forms of short-term activity-dependent regulation, including paired-pulse and frequency­ dependent plasticity, similar to other hippocampal pathways such as the Schaffer collateral (SC) input from CA3 to CA1. The TA pathway provides a strongly excitatory input to stratum radiatum giant cells of CA1. The excitatory component of the TA pathway undergoes a long-lasting decrease in synaptic strength following low-frequency stimulation in a manner partially dependent on the activation of NMDA receptors. High­ frequency activation of the TA pathway recruits a feedforward inhibition that can prevent CA1 pyramidal cells from spiking in response to SC input; this spike-blocking effect shows that the TA pathway can act to regulate information flow through the hippocampal trisynaptic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A angiotensina (Ang) II e aldosterona induzem hipertensão arterial por mecanismos em parte mediados pela imunidade adaptativa, envolvendo linfócitos T auxiliares respondedores (Tresp). Os linfócitos T reguladores (Treg) são capazes de suprimir os efeitos próinflamatórios do sistema imune. O presente estudo avaliou se a transferência adotiva de Treg é capaz de prevenir a hipertensão e a lesão vascular induzidas pela Ang II ou pela aldosterona, em dois protocolos distintos. No protocolo com Ang II, camundongos machos C57BL/6 sofreram a injeção endovenosa de Treg ou Tresp, sendo depois infundidos com Ang II (1μg/kg/min), ou salina (grupo controle) por 14 dias. No protocolo com aldosterona, um outro conjunto de animais sofreu injeções de Treg ou Tresp, sendo depois infundido com aldosterona (600μg/kg/d) ou salina (grupo controle), pelo mesmo intervalo de tempo. O grupo tratado com aldosterona recebeu salina 1% na água. Tanto o grupo Ang II como aldosterona apresentaram elevação da pressão arterial sistólica (43% e 31% respectivamente), da atividade da NADPH oxidase na aorta (1,5 e 1,9 vezes, respectivamente) e no coração (1,8 e 2,4 vezes, respectivamente) e uma redução da resposta vasodilatadora à acetilcolina (de 70% e 56%, respectivamente), quando comparados com os respectivos controles (P<0,05). Adicionalmente, a administração de Ang II proporcionou um aumento rigidez vascular (P<0,001), na expressão de VCAM-1 nas artérias mesentéricas (P<0,05), na infiltração aórtica de macrófagos e linfócitos T (P<0,001) e nos níveis plasmáticos das citocinas inflamatórias interferon (INF)-γ, interleucina (IL)-6, Tumor necrosis factor (TNF)-α e IL-10 (P<0,05). Ang II causou uma queda de 43% no número de células Foxp3+ no córtex renal, enquanto que a transferência adotiva de Treg aumentou as células Foxp3+ em duas vezes em comparação com o controle. A administração de Treg preveniu o remodelamento vascular induzido pela aldosterona, observado na relação média/lúmen e na área transversal da média das artérias mesentéricas (P<0,05). Todos os parâmetros acima foram prevenidos com a administração de Treg, mas não de Tresp. Estes resultados demonstram que Treg são capazes de impedir a lesão vascular e a hipertensão mediadas por Ang II ou por aldosterona, em parte através de ações antiinflamatórias. Em conclusão, uma abordagem imuno-modulatória pode prevenir o aumento da pressão arterial, o estresse oxidativo vascular, a inflamação e a disfunção endotelial induzidos por Ang II ou aldosterona.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cerebellum is a major supraspinal center involved in the coordination of movement. The principal neurons of the cerebellar cortex, Purkinje cells, receive excitatory synaptic input from two sources: the parallel and climbing fibers. These pathways have markedly different effects: the parallel fibers control the rate of simple sodium spikes, while the climbing fibers induce characteristic complex spike bursts, which are accompanied by dendritic calcium transients and play a key role in regulating synaptic plasticity. While many studies using a variety of species, behaviors, and cerebellar regions have documented modulation in Purkinje cell activity during movement, few have attempted to record from these neurons in unrestrained rodents. In this dissertation, we use chronic, multi-tetrode recording in freely-behaving rats to study simple and complex spike firing patterns during locomotion and sleep. Purkinje cells discharge rhythmically during stepping, but this activity is highly variable across steps. We show that behavioral variables systematically influence the step-locked firing rate in a step-phase-dependent way, revealing a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers, as well as functional differences between cerebellar lobules. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. During sleep, we observe an attenuation of both simple and complex spiking, relative to awake behavior. Although firing rates during slow wave sleep (SWS) and rapid eye movement sleep (REM) are similar, simple spike activity is highly regular in SWS, while REM is characterized by phasic increases and pauses in simple spiking. This phasic activity in REM is associated with pontine waves, which propagate into the cerebellar cortex and modulate both simple and complex spiking. Such a temporal coincidence between parallel and climbing fiber activity is known to drive plasticity at parallel fiber synapses; consequently, pontocerebellar waves may provide a mechanism for tuning synaptic weights in the cerebellum during active sleep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of neural signals have been measured as correlates to consciousness. In particular, late current sinks in layer 1, distributed activity across the cortex, and feedback processing have all been implicated. What are the physiological underpinnings of these signals? What computational role do they play in the brain? Why do they correlate to consciousness? This thesis begins to answer these questions by focusing on the pyramidal neuron. As the primary communicator of long-range feedforward and feedback signals in the cortex, the pyramidal neuron is set up to play an important role in establishing distributed representations. Additionally, the dendritic extent, reaching layer 1, is well situated to receive feedback inputs and contribute to current sinks in the upper layers. An investigation of pyramidal neuron physiology is therefore necessary to understand how the brain creates, and potentially uses, the neural correlates of consciousness. An important part of this thesis will be in establishing the computational role that dendritic physiology plays. In order to do this, a combined experimental and modeling approach is used.

This thesis beings with single-cell experiments in layer 5 and layer 2/3 pyramidal neurons. In both cases, dendritic nonlinearities are characterized and found to be integral regulators of neural output. Particular attention is paid to calcium spikes and NMDA spikes, which both exist in the apical dendrites, considerable distances from the spike initiation zone. These experiments are then used to create detailed multicompartmental models. These models are used to test hypothesis regarding spatial distribution of membrane channels, to quantify the effects of certain experimental manipulations, and to establish the computational properties of the single cell. We find that the pyramidal neuron physiology can carry out a coincidence detection mechanism. Further abstraction of these models reveals potential mechanisms for spike time control, frequency modulation, and tuning. Finally, a set of experiments are carried out to establish the effect of long-range feedback inputs onto the pyramidal neuron. A final discussion then explores a potential way in which the physiology of pyramidal neurons can establish distributed representations, and contribute to consciousness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O estado nutricional e hormonal em fases iniciais de desenvolvimento (gestação e lactação) está relacionado a alterações epigenéticas, que podem levar ao desenvolvimento de doenças. A obesidade infantil está relacionada com a ocorrência da obesidade na idade adulta, resistência à insulina e maior risco cardiometabólico. Em estudos experimentais, a superalimentação neonatal causa obesidade e aumenta o risco de doenças cardiovasculares. Estes animais apresentam obesidade visceral, hiperfagia, hiperleptinemia e hipertensão na idade adulta. Previamente, demonstramos que a hiperleptinemia neonatal causa hiperfunção da medula adrenal e microesteatose na idade adulta. No presente estudo avaliamos a função adrenal de ratos adultos obesos no modelo de superalimentação neonatal por redução do tamanho da ninhada e a sensibilidade as catecolaminas no tecido adiposo visceral (TAV) e no fígado. Ao nascimento todas as ninhadas tiveram seu número de filhotes ajustados para 10. Para induzir a superalimentação neonatal, o tamanho da ninhada foi reduzido de dez para três filhotes machos no terceiro dia de lactação até o desmame (SA), enquanto que o grupo controle permaneceu com 10 filhotes durante toda a lactação. Após o desmame, os ratos tiveram livre acesso à dieta padrão e água até 180 dias (1 animal de cada ninhada, n = 7). O TAV e as glândulas adrenais foram pesadas. As contrações hormonais séricas, o conteúdo hepático de glicogênio e triglicerídeos foram avaliados por kits comerciais. O conteúdo e a secreção de catecolaminas adrenais foram avaliados utilizando o método do trihidroxindol. O conteúdo dos hormônios eixo hipotálamo-hipófise-córtex adrenal, das enzimas da via de síntese das catecolaminas na glândula adrenal, ADRB2 no fígado e ADRB3 no TAV foram determinados por Western blotting ou imunohistoquímica. As diferenças foram consideradas significativas quando p <0,05. Aos 180 dias de vida, o grupo SA apresentou maior massa corporal (+15%), maior consumo alimentar (+15%) e maior adiposidade visceral (+79%). Os hormônios do eixo hipotálamo-hipófise-córtex-adrenal não foram alterados. O grupo SA apresentou maior expressão de tirosina hidroxilase e de DOPA descarboxilase (+31% e 90%, respectivamente); conteúdo de catecolaminas adrenais (absoluta: 35% e relativa: 40%), e secreção de catecolaminas, tanto basal quanto estimulada por cafeína (+35% e 43%, respectivamente). O conteúdo ADRB3 no TAV não foi alterado nos grupo SA, entretanto o ADRB2 no fígado apresentou-se menor (-45%). O grupo SA apresentou maior conteúdo de glicogênio e triglicerídeos no fígado (+79% e +49%, respectivamente), além de microesteatose. A superalimentação neonatal resulta em hiperativação adrenomedular e aparentemente está associada a preservação da sensibilidade às catecolaminas no VAT. Adicionalmente sugerimos que o maior conteúdo de glicogênio e triglicerídeos hepático seja devido a menor sensibilidade as catecolaminas. Tal perfil pode contribuir para a disfunção metabólica hepática e hipertensão arterial que são características deste modelo de obesidade programada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em roedores, as vibrissas são detectores táteis que desempenham papel importante na exploração espacial do ambiente e na discriminação de texturas. No córtex somatosensorial, os campos receptivos de cada uma das vibrissas estão organizados no hemisfério contralateral em colunas discretas denominadas barris. A lesão unilateral dos barris produz um comportamento assimétrico caracterizado pela redução no uso da vibrissa contralateral à lesão na exploração do ambiente, assimetria esta que diminui progressivamente na medida em que os animais são repetidamente testados. Em ratos, este comportamento, normalmente medido pelo número de vezes que os animais encostam as vibrissas na parede de um campo aberto, tem se mostrado uma ferramenta importante em estudos de plasticidade e recuperação funcional após lesões corticais. Contudo, em camundongos com lesões unilaterais dos barris, o registro dos toques das vibrissas na parede tem levado a resultados contraditórios. Esse trabalho tem por objetivo principal o estabelecimento de um modelo comportamental para avaliação da recuperação funcional após lesões unilaterais dos barris do córtex somatosensorial em camundongos. Para tanto, o sentido dos deslocamentos realizados próximos às quinas do campo aberto foi registrado em camundongos Suíços machos submetidos à criolesão unilateral dos barris foi avaliado em três estudos independentes. No primeiro estudo, demonstramos que no grupo Criolesado houve um predomínio dos deslocamentos em sentido contralateral na primeira vez em que foram testados no campo aberto e este resultado foi independente do fato de na primeira sessão ter sido realizada um ou nove dias após a cirurgia. Além disso, demonstramos que o predomínio de deslocamentos em sentido contralateral foi diminuindo na medida em que os animais eram repetidamente testados no campo aberto. No segundo estudo, demonstramos que os animais do grupo Criolesado que foram previamente submetidos a cinco sessões experimentais no campo aberto não apresentaram, após a cirurgia, diferenças entre os deslocamentos realizados em sentido ipsolateral e contralateral à lesão. Já no terceiro estudo, demonstramos que os animais do grupo Criolesado que não foram previamente testados no campo aberto apresentam um predomínio de deslocamentos em sentido contralateral, mesmo quando o teste foi realizado 48 dias após a lesão unilateral dos barris. Nossos dados sugerem que o sentido dos deslocamentos próximo às quinas do campo aberto pode ser uma ferramenta importante para avaliar a recuperação das lesões unilaterais nos barris do córtex somatosensorial. Além disso, para avaliar a recuperação funcional após a lesão unilateral dos barris do córtex somatossensorial, sem o viés da habituação à situação do teste, os animais devem ser testados apenas uma vez

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: An accumulating body of evidence points to the significance of neuroinflammation and immunogenetics in schizophrenia, and an imbalance of cytokines in the central nervous system (CNS) has been suggested to be associated with the disorder. Munc18-overexpressing mice (Munc18-OE) have provided a model for the study of the alterations that may underlie the symptoms of subjects with schizophrenia. The aim of the present study was to elucidate the involvement of neuroinflammation and cytokine imbalance in this model. Methods: Cytokines were evaluated in the cortex and the striatum of Munc18-OE and wild-type (WT) mice by enzyme-linked immunosorbent assay (ELISA). Protein levels of specific microglia and macrophage, astrocytic and neuroinflammation markers were quantified by western blot in the cortex and the striatum of Munc18-OE and WT mice. Results: Each cytokine evaluated (Interferon-gamma (IFN-gamma), Tumor Necrosis Factor-alpha (TNF-alpha), Interleukin-2 (IL-2) and CCL2 chemokine) was present at higher levels in the striatum of Munc18-OE mice than WT. Cortical TNF-alpha and IL-2 levels were significantly lower in Munc18-OE mice than WT mice. The microglia and macrophage marker CD11b was lower in the cortexes of Munc18-OE mice than WT, but no differences were observed in the striatum. Glial Fibrillary Acidic Protein (GFAP) and Nuclear Factor-kappaB (NF-kappa B)p65 levels were not different between the groups. Interleukin-1beta (IL-1 beta) and IL-6 levels were beneath detection limits. Conclusions: The disrupted levels of cytokines detected in the brain of Munc18-OE mice was found to be similar to clinical reports and endorses study of this type for analysis of this aspect of the disorder. The lower CD11b expression in the cortex but not in the striatum of the Munc18-OE mice may reflect differences in physiological activity. The cytokine expression pattern observed in Munc18-OE mice is similar to a previously published model of schizophrenia caused by maternal immune activation. Together, these data suggest a possible role for an immune imbalance in this disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has long been known that neurons in the brain are not physiologically homogeneous. In response to current stimulus, they can fire several distinct patterns of action potentials that are associated with different physiological classes ranging from regular-spiking cells, fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we show that the high degree of variability in firing characteristics of action potentials among these cells is accompanied with a significant variability in the energy demands required to restore the concentration gradients after an action potential. The values of the metabolic energy were calculated for a wide range of cell temperatures and stimulus intensities following two different approaches. The first one is based on the amount of Na+ load crossing the membrane during a single action potential, while the second one focuses on the electrochemical energy functions deduced from the dynamics of the computational neuron models. The results show that the thalamocortical relay neuron is the most energy-efficient cell consuming between 7 and 18 nJ/cm(2) for each spike generated, while both the regular and fast spiking cells from somatosensory cortex and the intrinsically-bursting cell from a cat visual cortex are the least energy-efficient, and can consume up to 100 nJ/cm(2) per spike. The lowest values of these energy demands were achieved at higher temperatures and high external stimuli.