966 resultados para Greenhouse gase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven sources of resistance to the two predominant races IB-1 and IB-9 of the rice blast pathogen Pyricularia grisea were selected based on leaf blast reaction in tests conducted under controlled greenhouse conditions. Crosses involving resistant and susceptible parents were made to study the inheritance of the disease reaction for different sources of resistance. The F1 and F2 progenies of all crosses, including backcrosses to resistant and susceptible parents, were tested for reaction to leaf blast. The data showed that resistance is controlled by one to three genes that segregate independently in most of the donors. Non-allelic interaction among resistance genes, including dominant epistasis, was identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six brachytic maize varieties were crossed in a diallel mating scheme. Both varieties and crosses were grown hydroponically in a greenhouse, in randomized complete blocks with three replications in two seasons. Four brachytic double cross hybrids were used as checks. Twenty-eight days after planting, data for eight traits were taken for weights of the total plant (TPW), top plant (TOW), total roots (TRW), seminal roots (SRW), and nodal roots (NRW) and number of total roots (TRN), seminal roots (SRN), and nodal roots (NRN). Ten plants were measured in each plot and all the analyses were accomplished with plot means. In the diallel cross the top plant contributed 57.6% of the total plant weight, for seminal roots 15.4%, and for nodal roots 27.0%. Root number distribution was 36.7% seminal roots and 63.3% nodal roots. Approximately the same ratios were observed in the checks. The average heterosis effects were nonsignificant for all traits; the other components of heterosis (variety and specific heterosis) also were not important sources of variation in young plants. The overall results suggest that nonadditive gene action is not an important source of variation for the plant and root system of young plants. The positive correlation coefficients for combinations of traits indicated that they are under the control of a polygenic system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the latter days, human activities constantly increase greenhouse gases emissions in the atmosphere, which has a direct impact on a global climate warming. Finland as European Union member, developed national structural plan to promote renewable energy generation, pursuing the aspects of Directive 2009/28/EC and put it on the sharepoint. Finland is on a way of enhancing national security of energy supply, increasing diversity of the energy mix. There are plenty significant objectives to develop onshore and offshore wind energy generation in country for a next few decades, as well as another renewable energy sources. To predict the future changes, there are a lot of scenario methods developed and adapted to energy industry. The Master’s thesis explored “Fuzzy cognitive maps” approach in scenarios developing, which captures expert’s knowledge in a graphical manner and using these captures for a raw scenarios testing and refinement. There were prospects of Finnish wind energy development for the year of 2030 considered, with aid of FCM technique. Five positive raw scenarios were developed and three of them tested against integrated expert’s map of knowledge, using graphical simulation. The study provides robust scenarios out of the preliminary defined, as outcome, assuming the impact of results, taken after simulation. The thesis was conducted in such way, that there will be possibilities to use existing knowledge captures from expert panel, to test and deploy different sets of scenarios regarding to Finnish wind energy development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä diplomityö on läpileikkaus kasvihuonekaasupäästöistä sekä niitä koskevista vähennystoimenpiteistä Suomessa Kioton pöytäkirjan ensimmäisen sopimuskauden lopussa. Työ on toteutettu kirjallisuustutkimuksena ja siihen on käytetty painettuja sekä sähköisiä lähteitä. Huoli ilmastonmuutoksesta on saanut aikaan sen, että kasvihuonekaasupäästöjä rajoitetaan tänä päivänä kansainvälisillä sopimuksilla. Vaikka kaikki suuretkaan päästäjämaat eivät ole sopimuksia ratifioineet, ovat EU-maat Suomi mukaan lukien sitoutuneet YK:n ilmastonmuutosta koskevaan puitesopimukseen ja sen noudattamiseen. Puitesopimusta tarkentavassa Kioton pöytäkirjassa EU sitoutui vähentämään kuuden eri kasvihuonekaasun kokonaispäästöjä yhteensä 8 prosenttia ajanjaksolla 2008–2012 vuoteen 1990 verrattuna. Kasvihuonekaasut, joita rajoitukset koskivat, olivat hiilidioksidi, metaani, dityppioksidi, fluorihiilivedyt, perfluorihiilivedyt ja rikkiheksafluoridi. EU:n sisäisessä taakanjaossa Suomen tavoite oli pitää päästöt vertailuvuoden 1990 tasossa ja Suomi alitti tämän noin viidellä prosentilla. Vuoden 2012 jälkeen Suomen kasvihuonekaasupäästöjen vähennystavoite on kiristynyt. Vuosille 2013–2020 Suomen tavoite on vähentää kasvihuonekaasupäästöjä 20 prosenttia alle perusvuoden 1990 tason. Työssä tutustutaan myös keinoihin, joilla aiempien ja tulevien päästöjenvähennystavoitteiden saavuttaminen on mahdollista. Näitä keinoja on mm. erilaisten biopolttoaineiden sekoittaminen fossiilisten polttoaineiden sekaan, energiatehokkuuden parantaminen ja biokaasun käytön lisääminen. Lisäksi työssä käsitellään eräitä merkityksellisiä käsitteitä, kuten EU:n päästökauppajärjestelmä ja hiilidioksidin talteenotto ja varastointi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SStrong evidence suggests that the climate is changing and that these changes are largely caused by human activities. A consensus exists among researchers that human activity is causing global warming and that actions to mitigate global warming need to be taken swiftly. The transportation sector, which relies heavily on fossil fuel burning and primarily oil, is one of the big contributors to air pollution problems at local, regional and global levels. It is the fastest growing source of greenhouse gas emissions and is estimated to be responsible for nearly a quarter of global energyrelated carbon dioxide emissions. Car sharing is a mobility solution encouraging its users to decrease private car usage in favour of communal transit and environmental goals. The idea of car sharing originates from the aspiration to decrease personal car ownership and to reduce vehicle distance travelled. This thesis seeks to complement the understanding of Finnish car sharing users and their usage through better categorization. Through better categorization and segmentation of Finnish car sharing users the thesis seeks to provide information for improved marketing insight. Research is done on the demographic and behavioural characteristics of Finnish car sharing users and they are compared with international findings about the characteristics of International car sharing users. The main research problem is Are Finnish car sharing users similar to international ones? A theoretical research framework on the determinants of individual car sharing usage is built based on international research about demographic and behaviouristic characteristics. After this a quantitative survey is performed to the customers of a Finnish car sharing organization. The data analysed in the thesis consist out of 532 answers received from the car sharing organizations customers. The data is analysed with descriptive and other exploratory methods, which create an understanding of Finnish car sharing users. At the end of the analysis the demographic and behavioural characteristics of Finnish car sharing users are compared with international ones. The research findings of the thesis indicate that the demographic and behavioural characteristics of Finnish car sharing usage largely follow those of their international counterparts. Thanks to the thesis results the car sharing organization is able to better target their customers through improved marketing insight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Master’s thesis Biomass Utilization in PFC Co-firing System with the Slagging and Fouling Analysis is the study of the modern technologies of different coal-firing systems: PFC system, FB system and GF system. The biomass co-fired with coal is represented by the research of the company Alstom Power Plant. Based on the back ground of the air pollution, greenhouse effect problems and the national fuel security today, the bioenergy utilization is more and more popular. However, the biomass is promoted to burn to decrease the emission amount of carbon dioxide and other air pollutions, new problems form like slagging and fouling, hot corrosion in the firing systems. Thesis represent the brief overview of different coal-firing systems utilized in the world, and focus on the biomass-coal co-firing in the PFC system. The biomass supply and how the PFC system is running are represented in the thesis. Additionally, the new problems of hot corrosion, slagging and fouling are mentioned. The slagging and fouling problem is simulated by using the software HSC Chemistry 6.1, and the emissions comparison between coal-firing and co-firing are simulated as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Greenhouse gases emitted from energy production and transportation are dramatically changing the climate of Planet Earth. As a consequence, global warming is affecting the living conditions of numerous plant and animal species, including ours. Thus the development of sustainable and renewable liquid fuels is an essential global challenge in order to combat the climate change. In the past decades many technologies have been developed as alternatives to currently used petroleum fuels, such as bioethanol and biodiesel. However, even with gradually increasing production, the market penetration of these first generation biofuels is still relatively small compared to fossil fuels. Researchers have long ago realized that there is a need for advanced biofuels with improved physical and chemical properties compared to bioethanol and with biomass raw materials not competing with food production. Several target molecules have been identified as potential fuel candidates, such as alkanes, fatty acids, long carbon‐chain alcohols and isoprenoids. The current study focuses on the biosynthesis of butanol and propane as possible biofuels. The scope of this research was to investigate novel heterologous metabolic pathways and to identify bottlenecks for alcohol and alkane generation using Escherichia coli as a model host microorganism. The first theme of the work studied the pathways generating butyraldehyde, the common denominator for butanol and propane biosynthesis. Two ways of generating butyraldehyde were described, one via the bacterial fatty acid elongation machinery and the other via partial overexpression of the acetone‐butanol‐ethanol fermentation pathway found in Clostridium acetobutylicum. The second theme of the experimental work studied the reduction of butyraldehyde to butanol catalysed by various bacterial aldehyde‐reductase enzymes, whereas the final part of the work investigated the in vivo kinetics of the cyanobacterial aldehyde deformylating oxygenase (ADO) for the generation of hydrocarbons. The results showed that the novel butanol pathway, based on fatty acid biosynthesis consisting of an acyl‐ACP thioesterase and a carboxylic acid reductase, is tolerant to oxygen, thus being an efficient alternative to the previous Clostridial pathways. It was also shown that butanol can be produced from acetyl‐CoA using acetoacetyl CoA synthase (NphT7) or acetyl‐CoA acetyltransferase (AtoB) enzymes. The study also demonstrated, for the first time, that bacterial biosynthesis of propane is possible. The efficiency of the system is clearly limited by the poor kinetic properties of the ADO enzyme, and for proper function in vivo, the catalytic machinery requires a coupled electron relay system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repowering existing power plants by replacing coal with biomass might offer an interesting option to ease the transition from fossil fuels to renewable energy sources and promote a fur-ther expansion of bioenergy in Europe, on account of the potential to decrease greenhouse gas emissions, as well as other pollutants (SOx, NOx, etcetera). In addition, a great part of the appeal of repowering projects comes from the opportunity to reuse the vast existing invest-ment and infrastructure associated with coal-based power generation. Even so, only a limited number of experiences with repowering are found. Therefore, efforts are required to produce technical and scientific evidence to determine whether said technology might be considered feasible for its adoption within European conditions. A detailed evaluation of the technical and economic aspects of this technology constitutes a powerful tool for decision makers to define the energy future for Europe. To better illustrate this concept, a case study is analyzed. A Slovakian pulverized coal plant was used as the basis for determining the effects on perfor-mance, operation, maintenance and cost when fuel is shifted to biomass. It was found that biomass fuel properties play a crucial role in plant repowering. Furthermore, results demon-strate that this technology offers renewable energy with low pollutant emissions at the cost of reduced capacity, relatively high levelized cost of electricity and sometimes, a maintenance-intensive operation. Lastly, regardless of the fact that existing equipment can be reutilized for the most part, extensive additions/modifications may be required to ensure a safe operation and an acceptable performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral dissertation explores the contribution of environmental management practices, the so-called clean development mechanism (CDM) projects, and foreign direct investment (FDI) in achieving sustainable development in developing countries, particularly in Sub- Saharan Africa. Because the climate change caused by greenhouse gas emissions is one of the most serious global environmental challenges, the main focus is on the causal links between carbon dioxide (CO2) emissions, energy consumption, and economic development in Sub-Saharan Africa. In addition, the dissertation investigates the factors that have affected the distribution of CDM projects in developing countries and the relationships between FDI and other macroeconomic variables of interest. The main contribution of the dissertation is empirical. One of the publications uses crosssectional data and Tobit and Poisson regressions. Three of the studies use time-series data and vector autoregressive and vector error correction models, while two publications use panel data and panel data estimation methods. One of the publications uses thus both timeseries and panel data. The concept of Granger causality is utilized in four of the publications. The results indicate that there are significant differences in the Granger causality relationships between CO2 emissions, energy consumption, economic growth, and FDI in different countries. It appears also that the causality relationships change over time. Furthermore, the results support the environmental Kuznets curve hypothesis but only for some of the countries. As to CDM activities, past emission levels, institutional quality, and the size of the host country appear to be among the significant determinants of the distribution of CDM projects. FDI and exports are also found to be significant determinants of economic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions in the European Union promotes the combustion of biomass rather than fossil fuels in energy production. Circulating fluidized bed (CFB) combustion offers a simple, flexible and efficient way to utilize untreated biomass in a large scale. CFB furnaces are modeled in order to understand their operation better and to help in the design of new furnaces. Therefore, physically accurate models are needed to describe the heavily coupled multiphase flow, reactions and heat transfer inside the furnace. This thesis presents a new model for the fuel flow inside the CFB furnace, which acknowledges the physical properties of the fuel and the multiphase flow phenomena inside the furnace. This model is applied with special interest in the firing of untreated biomass. An experimental method is utilized to characterize gas-fuel drag force relations. This characteristic drag force approach is developed into a gas-fuel drag force model suitable for irregular, non-spherical biomass particles and applied together with the new fuel flow model in the modeling of a large-scale CFB furnace. The model results are physically valid and achieve very good correspondence with the measurement results from large-scale CFB furnace firing biomass. With the methods and models presented in this work, the fuel flow field inside a circulating fluidized bed furnace can be modeled with better accuracy and more efficiently than in previous studies with a three-dimensional holistic model frame.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is common knowledge of the world’s dependency on fossil fuel for energy, its unsustainability on the long run and the changing trend towards renewable energy as an alternative energy source. This aims to cut down greenhouse gas emission and its impact on the rate of ecological and climatic change. Quite remarkably, wind energy has been one of many focus areas of renewable energy sources and has attracted lots of investment and technological advancement. The objective of this research is to explore wind energy and its application in household heating. This research aims at applying experimental approach in real time to study and verify a virtually simulated wind powered hydraulic house heating system. The hardware components comprise of an integrated hydraulic pump, flow control valve, hydraulic fluid and other hydraulic components. The system design and control applies hardware in-the-loop (HIL) simulation setup. Output signal from the semi-empirical turbine modelling controls the integrated motor to generate flow. Throttling the volume flow creates pressure drop across the valve and subsequently thermal power in the system to be outputted using a heat exchanger. Maximum thermal power is achieved by regulating valve orifice to achieve optimum system parameter. Savonius rotor is preferred for its low inertia, high starting torque and ease of design and maintenance characteristics, but lags in power efficiency. A prototype turbine design is used; with power output in range of practical Savonius turbine. The physical mechanism of the prototype turbine’s augmentation design is not known and will not be a focus in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to changing cropping practices in perennial grass seed crops in western Oregon, USA, alternative rotation systems are being considered to reduce weed infestations. Information is generally lacking regarding the effects of alternative agronomic operations and herbicide inputs on soil weed seed bank composition during this transition. Six crop rotation systems were imposed in 1992 on a field that had historically produced monoculture perennial ryegrass (Lolium perenne L.) seeds. Each system plot was 20 x 30 m, arranged in a randomized complete block design, replicated four times. Twenty to thirty soil cores were sampled in June 1997 from each plot. The weed species composition of the cores was determined by successive greenhouse grow-out assays. In addition to seed density, heterogeneity indices for species evenness, richness, and diversity were determined. The most abundant species were Juncus bufonius L. and Poa annua L. Changes in seed bank composition were due to the different herbicides used for the rotation crop components. Compared to the other rotation systems, no-tillage, spring-planted wheat (Triticum aestivum L.) and oat (Avena sativa L.) reduced overall weed seed density and richness, but did not affect weed species evenness or diversity. When meadowfoam (Limnanthes alba Hartweg ex Benth.) succeeded wheat in rotation, weed species richness was unaffected, but evenness and diversity were reduced, compared to the other rotation systems. For meadowfoam in sequence after white clover (Trifolium repens L.), crop establishment method (no-tillage and conventional tillage) had no effect on weed seed species density, evenness, or diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplomityön tavoitteena on selvittää sinfoniaorkesterin toiminnan merkittävimmät kasvihuonekaasupäästölähteet sekä kuinka kasvihuonekaasupäästöjä voidaan vähentää ja/tai kompensoida niin, että voidaan saavuttaa hiilineutraalius. Tavoitteena on myös tutkia sinfoniaorkesterin vaikutusmahdollisuudet sen sidosryhmiin. Tuloksia tarkastellaan myös globaalissa mittakaavassa, jolloin nähdään millainen vaikutus sinfoniaorkestereiden hiilineutraaliudella olisi ilmastonmuutoksen hillinnässä. Diplomityössä esitetään ensin hiilijalanjälkilaskentaa ja musiikkiteollisuutta yleisesti, jonka jälkeen selvitetään case-tutkimuksena Sinfonia Lahden hiilijalanjälki. Hiilijalanjälkilaskenta perustuu Sinfonia Lahden antamiin tietoihin, minkä lisäksi hyödynnetään diplomityön yhteydessä tehtyjen kyselyjen tuloksia. Kyselyjen tarkoituksena on selvittää sekä Sinfonia Lahden henkilöstön että yleisön matkustustottumuksia. Sinfonia Lahden henkilöstölle järjestettiin myös workshop, jossa tutustuttiin tarkemmin ilmastonmuutokseen. Hiilineutraalius saavutetaan selvittämällä toiminnasta aiheutuvat kasvihuonekaasupäästöt. Tämän jälkeen toimintaa muutetaan vähäpäästöisemmäksi ja lopuksi jäljelle jäävät kasvihuonekaasupäästöt kompensoidaan. Vaikka Sinfonia Lahden merkittävimmät kasvihuonekaasupäästölähteet ovat liikenne sekä energiankulutus, päästövähennyksiä tulee tehdä pysyvästi kaikista mahdollisista toiminnoista. Erityisen tärkeää on saada sidosryhmät osallistumaan sinfoniaorkesterin asettamiin vähennystavoitteisiin. Kompensoinnilla on merkittävä rooli hiilineutraaliuden saavuttamisessa. Tällä hetkellä maailman sinfoniaorkesterit eivät aktiivisesti pyri hiilineutraaliin toimintaan.