974 resultados para Green function
Resumo:
The problem of semantic interoperability arises while integrating applications in different task domains across the product life cycle. A new shape-function-relationship (SFR) framework is proposed as a taxonomy based on which an ontology is developed. Ontology based on the SFR framework, that captures explicit definition of terminology and knowledge relationships in terms of shape, function and relationship descriptors, offers an attractive approach for solving semantic interoperability issue. Since all instances of terms are based on single taxonomy with a formal classification, mapping of terms requires a simple check on the attributes used in the classification. As a preliminary study, the framework is used to develop ontology of terms used in the aero-engine domain and the ontology is used to resolve the semantic interoperability problem in the integration of design and maintenance. Since the framework allows a single term to have multiple classifications, handling context dependent usage of terms becomes possible. Automating the classification of terms and establishing the completeness of the classification scheme are being addressed presently.
Resumo:
The presence of software bloat in large flexible software systems can hurt energy efficiency. However, identifying and mitigating bloat is fairly effort intensive. To enable such efforts to be directed where there is a substantial potential for energy savings, we investigate the impact of bloat on power consumption under different situations. We conduct the first systematic experimental study of the joint power-performance implications of bloat across a range of hardware and software configurations on modern server platforms. The study employs controlled experiments to expose different effects of a common type of Java runtime bloat, excess temporary objects, in the context of the SPECPower_ssj2008 workload. We introduce the notion of equi-performance power reduction to characterize the impact, in addition to peak power comparisons. The results show a wide variation in energy savings from bloat reduction across these configurations. Energy efficiency benefits at peak performance tend to be most pronounced when bloat affects a performance bottleneck and non-bloated resources have low energy-proportionality. Equi-performance power savings are highest when bloated resources have a high degree of energy proportionality. We develop an analytical model that establishes a general relation between resource pressure caused by bloat and its energy efficiency impact under different conditions of resource bottlenecks and energy proportionality. Applying the model to different "what-if" scenarios, we predict the impact of bloat reduction and corroborate these predictions with empirical observations. Our work shows that the prevalent software-only view of bloat is inadequate for assessing its power-performance impact and instead provides a full systems approach for reasoning about its implications.
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.
Resumo:
We highlight the need for a comprehensive, multi-disciplinary approach for the development of cost-effective water remediation methods. Combining ``chimie douce'' and green chemical principles seems essential for making these technologies economically viable and socially relevant (especially in the developing world). A comprehensive approach to water remediation will take into account issues such as nanotoxicity, chemical yield, cost, and ease of deployment in reactors. By considering technological challenges that lie ahead, we will attempt to identify directions that are likely to make photocatalytic water remediation a more global technology than it currently is. (C) 2013 Elsevier Ltd. All rights reserved
Resumo:
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
Structural Insights into Saccharomyces cerevisiae Msh4-Msh5 Complex Function Using Homology Modeling
Resumo:
The Msh4-Msh5 protein complex in eukaryotes is involved in stabilizing Holliday junctions and its progenitors to facilitate crossing over during Meiosis I. These functions of the Msh4-Msh5 complex are essential for proper chromosomal segregation during the first meiotic division. The Msh4/5 proteins are homologous to the bacterial mismatch repair protein MutS and other MutS homologs (Msh2, Msh3, Msh6). Saccharomyces cerevisiae msh4/5 point mutants were identified recently that show two fold reduction in crossing over, compared to wild-type without affecting chromosome segregation. Three distinct classes of msh4/5 point mutations could be sorted based on their meiotic phenotypes. These include msh4/5 mutations that have a) crossover and viability defects similar to msh4/5 null mutants; b) intermediate defects in crossing over and viability and c) defects only in crossing over. The absence of a crystal structure for the Msh4-Msh5 complex has hindered an understanding of the structural aspects of Msh4-Msh5 function as well as molecular explanation for the meiotic defects observed in msh4/5 mutations. To address this problem, we generated a structural model of the S. cerevisiae Msh4-Msh5 complex using homology modeling. Further, structural analysis tailored with evolutionary information is used to predict sites with potentially critical roles in Msh4-Msh5 complex formation, DNA binding and to explain asymmetry within the Msh4-Msh5 complex. We also provide a structural rationale for the meiotic defects observed in the msh4/5 point mutations. The mutations are likely to affect stability of the Msh4/5 proteins and/or interactions with DNA. The Msh4-Msh5 model will facilitate the design and interpretation of new mutational data as well as structural studies of this important complex involved in meiotic chromosome segregation.
Resumo:
Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measured independently. After doping, the optical properties show the presence of new peaks, which could be well-resolved by spectroscopic ellipsometry. Also for the doped material, the complex refractive index, with respect to the dielectric function, has been determined. The broadening of the optical transitions is due to the delocalization of polarons at higher doping level. The detailed information about the dielectric function as well as refractive index function obtained by spectroscopic ellipsometry allows not only qualitative but also quantitative description of the optical properties of the undoped/doped polymer. For the direct characterization of the optical properties of MDMO-PPV, ellipsometry turns out to be advantageous compared to conventional reflection and transmission measurements.
Resumo:
ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were synthesized by a simple, cost effective and environmental friendly route using Euphorbia tirucalli plant latex. The structural properties and morphological features of the phosphors were well studied by PXRD, FTIR, SEM and TEM measurements. The luminescent properties of ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were investigated from the excitation and emission spectra. The phosphor performance was evaluated by color co-ordinates. The values were well located in the near white region as a result it was highly useful for the fabrication of green component in WLEDs. The average particle size was found to be similar to 9-18 nm and same was confirmed by TEM and Scherrer's method. The highest photoluminescence (PL) and thermoluminescence (TL) intensity was obtained to be similar to 7 mol% Dy3+ concentration. A single TL glow peak was recorded at 172 degrees C at a warming rate of 2.5 degrees Cs (1). The intensity at 172 degrees C peak increases linearly up to 1 kGy and after that it diminishes. PL intensity was studied with different plant latex concentration (2-8 ml) and highest PL intensity was recorded for similar to 8 ml. The optimized phosphor showed good reusability, low fading and wide range of linearity with gamma-dose hence the phosphor was quite useful in radiation dosimetry. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Efficient ZnO:Eu3+ (1-11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu3+ (7 mol%) was found to be in the range 27-47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at similar to 590, 615, 648 and 702 nm were attributed to the D-5(0) -> F-7(j(j=1,2,3,4)) transitions of Eu3+ ions. The highest PL intensity was recorded for 7 mol% with Eu3+ ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED's. Further, present method was reliable, environmentally friendly and alternative to economical routes. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Blastocyst hatching is critical for successful implantation leading to pregnancy. Its failure causes infertility. The phenomenon of blastocyst hatching in humans is poorly understood and the available information on this stems from studies of rodents such as mice and hamsters. We and others showed that hamster blastocyst hatching is characterized by firstly blastocyst deflation followed by a dissolution of the zona pellucida (zona) and accompanied by trophectodermal projections (TEPs). We also showed that embryo-derived cathepsins (Cat) proteases, specifically Cat-L, -B and -P act as zonalysins and are responsible for hatching. In this study, we show the expression and function of one of the potential regulators of embryogenesis, cyclooxygenase (COX)-2 during blastocyst development and hatching. The expression of COX-2 mRNA and protein was observed in 8-cell through hatched blastocyst stages and it was also localized to blastocysts TEPs. Specific COX-2 inhibitors, NS-398 and CAY-10404, inhibited blastocyst hatching; percentages achieved were only 28.4 5.3 and 32.3 5.4, respectively, compared with 90 with untreated embryos. Interestingly, inhibitor-treated blastocysts failed to deflate, normally observed during hatching. Supplementation of prostaglandins (PGs)-E-2 or -I-2 to cultured embryos reversed the inhibitors effect on hatching and also the deflation behavior. Importantly, the levels of mRNA and protein of Cat-L, -B and -P showed a significant reduction in the inhibitor-treated embryos compared with untreated embryos, although its mechanism remains to be examined. These data provide the first evidence that COX-2 is critical for blastocyst hatching in the golden hamster.
Resumo:
In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS2 armchair nanoribbon MOSFETs. The effect of deformation (3 degrees-7 degrees twist or wrap and 0.3-0.7 angstrom ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I-D-V-D characteristics of such devices under the varying conditions, with focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple. (C) 2013 AIP Publishing LLC.
Resumo:
Global efforts in macromolecular crystallography started in the thirties of the last century. However, definitive results began to emerge only in the late fifties and the early sixties. India has a long tradition in crystallography. The country had a head start in theoretical and computational structural biology, thanks to the efforts of G.N. Ramachandran and his colleagues in the fifties and the sixties. However, macromolecular crystallography got off the ground in India only in the eighties, particularly after the Bangalore group received adequate support from the Department of Science and Technology under their Thrust Area Programme. The Bangalore centre was also identified as a national nucleus for the development of the area in the country. Since then work in the area has spread widely and is being carried out by several groups, mainly led by scientists trained at Bangalore or their descendents, in about thirty institutions in India. In addition to the Department of Science and Technology, the effort is now supported by other agencies like the Department of Biotechnology and the Council of Scientific and Industrial Research. The problems addressed by macromolecular crystallographers in India encompass almost all aspects of modern biology. Indian efforts in macromolecular crystallography have also become an important component of the international efforts in the area.
Resumo:
Detection of explosives, especially trinitrotoluene (TNT), is of utmost importance due to its highly explosive nature and environmental hazard. Therefore, detection of TNT has been a matter of great concern to the scientific community worldwide. Herein, a new aggregation-induced phosphorescent emission (AIPE)-active iridium(III) bis(2-(2,4-difluorophenyl)pyridinato-NC2') (2-(2-pyridyl)benzimidazolato-N,N') complex FIrPyBiz] has been developed and serves as a molecular probe for the detection of TNT in the vapor phase, solid phase, and aqueous media. In addition, phosphorescent test strips have been constructed by impregnating Whatman filter paper with aggregates of FIrPyBiz for trace detection of TNT in contact mode, with detection limits in nanograms, by taking advantage of the excited state interaction of AIPE-active phosphorescent iridium(III) complex with that of TNT and the associated photophysical properties.
Resumo:
We extend our analysis of transverse single spin asymmetry in electroproduction of J/ψ to include the effect of the scale evolution of the transverse momentum dependent (TMD) parton distribution functions and gluon Sivers function. We estimate single spin asymmetry for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production, using an analytically obtained approximate solution of TMD evolution equations discussed in the literature. We find that there is a reduction in the asymmetry compared with our predictions for the earlier case considered by us, wherein the Q2 dependence came only from DGLAP evolution of the unpolarized gluon densities and a different parametrization of the TMD Sivers function was used.