1000 resultados para Gluon mass
Resumo:
Undaria pinnatifida (Harv.) Sur. is one of the three main seaweed species under commercial cultivation in China. In the mid-1990s the annual production was about 20000 tons dry. The supply of healthy sporelings is key to the success of commercial cultivation of Undaria. Previous studies demonstrated that instead of the zoospore collection method, sporelings can be cultured through the use of gametophyte clones. This paper reports the experimental results on mass culture of clones and sporeling raising in commercial scale. Light had an obvious effect on growth of gametophyte clones. Under an irradiance of 80 mumol m(-2) s(-1) and favorable temperature of 22-25degreesC, mean daily growth rate may reach as high as 37%. Several celled gametophyte fragments were sprayed onto the palm rope frame. Gametogenesis occurred after 4-6 days. Juvenile sporeling growth experiments showed that nitrate and phosphate concentrations of 2.9 10(-4) mol 1(-1) and 1.7 10(-5) mol 1(-1) were sufficient to enable the sporelings to maintain a high daily growth rate. Sporelings can reach a length of 1 cm in a month. Since 1997, extension of the clone technique has been carried out in Shandong Province. Large-scale production of sporelings for commercial cultivation of 14 and 31 hectares in 1997 and 1998 had been conducted successfully.
Resumo:
A simple, low-cost, and efficient airlift photobioreactor for microalgal mass culture was designed and developed. The reactor was made of Plexiglas, and composed of three major parts: outer tube, draft tube and air duct. The fluid-dynamic characteristics of the airlift reactor were studied. The system proved to be well suited to the mass cultivation of a marine microalga, Chlorella sp. In batch culture, the biomass volumetric output rate of 0.21 g l(-1) d(-1) was obtained at the superficial gas velocity of 4 mm s(-1) in the draft tube.
Resumo:
Field-collected tetrasporophytes of Palmaria palmata were tumbled in 300-L outdoor tanks from January to August at ambient daylength or in a constant short-day (SD) regime (8 h light per day), both at 10 or 15 degrees C. Tetrasporangia were massively induced after 2.5 months under SD conditions at 10 degrees C and completely lacking at 15 degrees C, both under SD or ambient daylength conditions, with a few tetrasporangia present at 10 degrees C and ambient daylength. Elongation rates of tagged tetrasporophytic thalli peaked from March to April in all four conditions, when the biomass densities in the outdoor tanks were close to 2.5 kg fresh weight m(-2). Under all four conditions, juvenile proliferations started to appear in June from the margins of the old fronds, and attained approximately 1 cm in length by the end of July. Approximately 80% of the tetraspores were released during the first three dark phases in a light/dark regime, and the remaining 20% during the light phases. A minimum of 10 min darkness was observed to trigger spore release. White light inhibited tetraspore release, while a similar number of spores were released in continuous red light or in the light/dark regime, although with no significant differences of spore release during subjective days and nights. Sporelings were successfully derived from the released tetraspores for mass propagation of the male gametophyte in 2000-L outdoor tanks in a greenhouse. Mass production of male gametophytic sporelings of P. palmata was completed two times by SD induction of tetrasporangia at 10 degrees C, release of spores in darkness and culturing the sporelings until they were ready to be propagated vegetatively in greenhouse tanks. One experiment lasted from January to October 2001, with spore release in June, and the second from September to April 2003, with spore release in January. These results may support the development of sustainable, year-round Palmaria farming. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Using the data of conductivity-temperature-depth (CTD) intensive observations conducted during Oct.-Nov. 2005, this study provides the first three-dimension quasi-synoptic description of the circulation in the western North Pacific. Several novel phenomena are revealed, especially in the deep ocean where earlier observations were very sparse. During the observations, the North Equatorial Current (NEC) splits at about 12A degrees N near the sea surface. This bifurcation shifts northward with depth, reaching about 20A degrees N at 1 000 m, and then remains nearly unchanged to as deep as 2 000 m. The Luzon Undercurrent (LUC), emerging below the Kuroshio from about 21A degrees N, intensifies southward, with its upper boundary surfacing around 12A degrees N. From there, part of the LUC separates from the coast, while the rest continues southward to join the Mindanao Current (MC). The MC extends to 2 000 m near the coast, and appears to be closely related to the subsurface cyclonic eddies which overlap low-salinity water from the North Pacific. The Mindanao Undercurrent (MUC), carrying waters from the South Pacific, shifts eastward upon approaching the Mindanao coast and eventually becomes part of the eastward undercurrent between 10A degrees N and 12A degrees N at 130A degrees E. In the upper 2 000 dbar, the total westward transport across 130A degrees E between 7.5A degrees N and 18A degrees N reaches 65.4 Sv (1 Sv = 10(-6) m(3)s(-1)), the northward transport across 18A degrees N from Luzon coast to 130A degrees E is up to 35.0 Sv, and the southward transport across 7.5A degrees N from Mindanao coast to 130A degrees E is 27.9 Sv.
Resumo:
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15 degrees-18 degrees N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15 degrees N with lowest salinity off shore at 21 degrees N, but mainly hugs the Mindanao coast south of 12 degrees N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10 degrees N at 130 degrees E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC).
Resumo:
A hydrodynamic-thermodynamic equation set was set up to reflect the formational mechanism and evolution of the Northern Yellow (Huanghai) Sea cold water mass (NYSCWM) and its density circulation. Appropriate mathematical physical models were established by using some physical postulations. An approximate analytic solution to expound the distributions of temperature and three-dimensional current velocity, which can be used to expound the formational mechanism of the NYSCWM and its density circulation is obtained by using the theory of boundary layer and perturbational analyses.
Resumo:
The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.
Resumo:
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A vertical 2-D water-mud numerical model is developed for estimating the rate of mud mass transport under wave action. A nonlinear semi-empirical rheology model featured by remarkable hysteresis loops in the relationships of the shear stress versus both the shear strain and the rate of shear strain of mud is applied to this water mud model. A logarithmic grid in the vertical direction is employed for numerical treatment, which increases the resolution of the flow in the neighborhood of both sides of the interface. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopus japonicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temperatures of 7, 14, 21, and 28A degrees C over a period of 40 days. Results show that RGM significantly decreased after 40 days at 21A degrees C and markedly decreased over the whole experiment period at 28A degrees C; however, no significant effect of duration was observed at 7 or 14A degrees C. At 14A degrees C, trypsin activity significantly decreased over 10 and 20 days, then increased; amylase and trypsin activity significantly decreased after 40 days at 28A degrees C. However, no significant effect of duration was found on amylase, pepsin or trypsin activities in the other temperature treatment groups. At 28A degrees C, lipase activity peaked in 20 days and then markedly decreased to a minimum at the end of the experiment. On the other hand, pepsin activity at 28A degrees C continuously increased over the whole experimental period. Principle component analysis showed that sea cucumbers on day 40 in the 21A degrees C group and in the previous 20 days in the 28A degrees C group were in the prophase of aestivation. At 28A degrees C, sea cucumbers aestivated at 30-40 days after the start of the experiment. It is concluded that the effect of temperature on the digestion of A. japonicus is comparatively weak within a specific range of water temperatures and aestivation behavior is accompanied by significant changes in RGM and digestive enzyme activities.
Resumo:
Mass mortalities of cultured zhikong scallops (Chlamys farreri) have occurred each summer in most culture areas of northern China since 1996. Among the hypothesized causes are high culture density, infectious disease and genetic inbreeding. To investigate these potential agents, C. farreri were deployed at three densities (low, medium and high) at three sites (Jiaonan, Penglai and Yantai) in the summer of 2000. Scallops were sampled for survival, growth and histopathology before, during and after a mortality episode. Most of the mortality occurred in July and August, during and toward the later part of the spawning season, when water temperature reached 23-26 degrees C. Final cumulative mortalities reached 85% to 90% at all three sites. Scallops in the medium and high densities had higher initial death rates than did those at the low density. High densities also inhibited growth. Ciliates from the genus Trichodina, larvae of various organisms and anomalous secretions were observed in sections of the gill cavity, with highest prevalence during and at the end of the mortality period. Prokaryotic inclusion bodies were found in the soft tissues, but their prevalence was low and apparently without correlation with mortalities. Genetic analysis with random amplified polymorphic DNA markers showed slightly lower heterozygosity in the cultured stocks (0.301) than in the wild stocks (0.331). It is possible that the mortalities are caused by a combination of several factors such as stress associated with reproduction, high temperature, overcrowding and poor circulation in the growout cages, opportunistic invaders or pathogens, and possibly inbreeding. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two methods for tetrodotoxin analysis using liquid chromatography coupled with electrospray iontrap mass spectrometry (LC-ESI-MS) have been established with C,, reversed phase column and hydrophilic interaction liquid chromatography (HILIC) column, respectively. Sensitivity and reproducibility of the methods were compared. The method using C-18 column in selected ion monitoring (SIM) mode had a detection limit (S/N = 3) of 120 pg, and a good linearity of the calibration curve was obtained for tetrodotoxin (r = 0. 9992). High reproducibility of the method was observed, with a relative standard deviation (RSD) below 10%. The method using HILIC column in SIM mode and selected reaction monitoring (SRM) mode had detection limits (S/N = 3) of 15 and 3.75 pg, respectively. Good linearity of the calibration curves was obtained for tetrodotoxin (r = 0. 9996 and 0. 9998 in SIM and SRM mode, respectively). T he reproducibility was high in SIM mode but relatively poor in SRM mode. Based on the results, the method using HILIC column in SIM mode was suggested for the analysis of tetrodotoxin with LC-MS system.
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds (trimethyltin, dibutyltin, tributyltin, diphenyltin and triphenyltin) in seawater samples. Agilent TC-C18 column was used for the separation, the mobile phase of HPLC was CH3CN : H2O: CH3COOH=65 : 23 : 12 (phi), 0.05% TEA, and pH value was adjusted to 3.0 by diluent ammonia. The flow rate was 0.6 mL . min(-1). Five mixed organotin compounds in a mix standard solution from 100 to 0.5 mu g . L-1 were applied for the method assessment. The experimental results indicate that the correlation coefficient of calibration curves (R-2) for each organotin compound was over 0.998 and the detection limits of the five organotin compounds were lower than 3 ng . L-1. Different mixed organic solvents including dichloromethane or toluene were used for extraction of organotin and the extraction condition of organotin from seawater was optimized. The 100 mL seawater acidized by hydrochloric acid was extracted by 10 mL carbon dichloride (CH2Cl2) with 2% tropolone for 10 min twice. Extracted organic solvents were mixed And blown to one drop by nitrogen with the rate of 1.7 mL . min(-1), then 1 mL acetonitrile was added to the drop for redissolving the organotin compounds. Finally, the mixed redissolution was filtered by 0.22 mu m organic filter membrane before analysis. it was found that the only organotin compound in seawater was triphenyltin (TPHT) and the content was 53.2 ng . L-1. The recoveries test from the standard addition for diphenyltin (DPHT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPHT) were over 80%. However, the recovery for trimethyltin (TMT) was relatively low and the value was 50%. The reason might be attributed to the decomposition or adsorption of those compounds during the extraction procedure. Further study on this subject is in progress.
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry(HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds in the shellfish samples. Agilent TC-C-18 column was selected, mobile phase of the HPLC was CH3CN:H2O: CH3COOH = 65:23:12 (V/V), 0. 05% TEA, pH = 3.0 at flow rate 0.4 mL/min. Five mixed organotin standards from 100 mu g/L to 0. 5 mu g/L was used for the method evaluation. The experimental results indicate that the linearity (R-2) for each compound was over 0.998. The shellfish samples were treated by supersonic extraction with mobile phase for 30min. Four organotin compounds including dibutyltin (DBT), tributyltin (TBT), diphenyltin (DphT) and triphenyltin (TPhT) in shellfish samples were detected with method mentioned above. It was found that the domain compounds in the samples were tributyltin (TBT) and triphenyltin (TPhT). The recoveries test from the standard addition for trimethyltin (TMT tributyltin (TBT), and triphenyltin (TPhT) were, over 80%. However, the recoveries for diphenyltin (DPhT) and dibutyltin (DBT) were relatively low, 37.3% and 75.2% respectively. The reason might be attributed to the decomposition of those compounds during the extraction procedure. The further study on this subject is under the progress.
Resumo:
A sensitive and efficient method for simultaneous determination of glutamic acid (Glu), gamma-amino-butyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat endbrains was developed by high-performance liquid chromatography (HPLC) with fluorescence detection and on-line mass spectrometric identification following derivatization with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC). Different parameters which influenced derivatization and separation were optimized. The complete separation of five neurotransmitter (NT) derivatives was performed on a reversed-phase Hypersil BDS-C-18 column with a gradient elution. The rapid structure identification of five neurotransmitter derivatives was carried out by on-line mass spectrometry with electrospray ionization (ESI) source in positive ion mode, and the BCEOC-labeled derivatives were characterized by easy-to-interpret mass spectra. Stability of derivatives, repeatability, precision and accuracy were evaluated and the results were excellent for efficient HPLC analysis. The quantitative linear range of five neurotransmitters were 2.441-2 x 10(4) nM, and limits of detection were in the range of 0.398-1.258 nM (S/N = 3:1). The changes of their concentrations in endbrains of three rat groups were also studied using this HPLC fluorescence detection method. The results indicated that exhausting exercise could obviously influence the concentrations of neurotransmitters in rat endbrains. The established method exhibited excellent validity, high sensitivity and convenience, and provided a new technique for simultaneous analysis of monoamine and amino acid neurotransmitters in rat brain. (C) 2008 Elsevier B.V. All rights reserved.