926 resultados para Glued laminated timber
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern
Resumo:
O processo constante de avaliação técnica e econômica dos sistemas de colheita de madeira é intrínseco às empresas florestais, devido ao fato de corresponder a uma fase de suma importância que despende elevado investimento financeiro. No experimento deste trabalho, estudaram-se o rendimento operacional e custos operacionais e de produção do processador florestal Hypro. A análise técnica englobou estudos de tempos e movimentos pelo método de tempo contínuo. O rendimento operacional foi determinado através do volume, em metros cúbicos de madeira processada. A análise econômica incorporou os parâmetros do custo operacional, custo de processamento da madeira e rendimento energético. A análise dos dados evidenciou que o rendimento operacional por hora efetiva de trabalho foi de 38 árvores e, em metros cúbicos sem casca por hora efetiva de trabalho, de 11,68 m³ h-1, com custo de processamento de madeira sem casca de US$ 6.85 por metro cúbico.
Resumo:
A mecanização da colheita de madeira permite maior controle dos custos e pode proporcionar reduções em prazos relativamente curtos. Além disso, tem um lugar de destaque na humanização do trabalho florestal e no aumento do rendimento operacional. O presente trabalho teve por objetivo avaliar o desempenho de operadores de harvester em função do tempo de experiência na atividade. Foram avaliados oito operadores do sexo masculino, com idade entre 23 e 46 anos. O estudo consistiu na análise do volume de madeira colhida pelo harvester. O tempo de experiência afeta significativamente o rendimento operacional dos operadores de harvester. Tal rendimento aumenta expressivamente nos primeiros 18 meses de experiência, mantendo-se em ascensão nos próximos 26 meses. Após os 44 meses de experiência, o rendimento dos operadores tende a reduzir, revelando as possíveis acomodações do cotidiano. Tais resultados permitem concluir que por volta dos 50 meses de experiência na atividade de operação de harvester, se faz necessária a adoção de medidas de reciclagem, motivação, entre outras, a fim de proporcionar aos operadores melhores condições de trabalho que os possibilitem continuar exercendo a atividade de forma eficiente e rentável à empresa.
Resumo:
Among the several variables that influence timber harvesting is the slope, which influences the productivity of forest machines. In this experiment the harvester was evaluated technically and economically while cutting and processing eucalyptus activity on different slope classes. The technical analysis included a study of time and movements by the method of continuous time; productivity was determined by the volume in cubic meters of wood processing. The economic analysis included the parameters of operational cost, production cost and energy consumption. The analysis of the data showed that productivity decreased according to the increase of the percent slope inclination, resulting in an effective work hour productivity increase from 18.72 to 39.71 m(3)sc, with a mean of operating cost of US$ 78.78 per work hour.
Resumo:
The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties
Resumo:
The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied
Resumo:
This research work is based, in search of reinforcement s vegetable alternative to polymer composites. The idealization of making a hybrid composite reinforced with vegetable fibers licuri with synthetic fibers is a pioneer in this area. Thus was conceived a hybrid composite laminate consisting of 05 (five) layers being 03 (three) webs of synthetic fibers of glass and E-02 (two) unidirectional fabrics of vegetable fibers licuri. In the configuration of the laminate layers have alternating distribution. The composite laminate was manufactured in Tecniplas Commerce & Industry LTD, in the form of a card through the manufacturing process of hand lay up. Licuri fibers used in making the foil were the City of Mare Island in the state of Bahia. After cooking and the idealization of the hybrid composite laminate, the objective of this research work has focused on evaluating the performance of the mechanical properties (ultimate strength, stiffness and elongation at break) through uniaxial tensile tests and three point bending. Comparative studies of the mechanical properties and as well as among other types of laminated hybrid composites studied previously, were performed. Promising results were found with respect to the mechanical properties of strength and stiffness to the hybridization process idealized here. To complement the entire study were analyzed in terms of macroscopic and microscopic characteristics of the fracture for all tests.
Resumo:
Composite materials have a wide application in various sectors, such as the medical field in the manufacture of prostheses, in automotive and aerospace. Thus it is essential to the development of new composite and a better understanding in the face of various loading conditions and service. Several structural elements are manufactured in the presence of geometric discontinuity (notch, hole, etc ) in their longitudinal sections and/or cross-cutting, and these affect the mechanical response of these elements. The objective is to study the mechanical response of laminated polymer matrix hybrid composites reinforced with glass fiber/jute in a uniaxial tensile test. The mechanical response takes in account both the influence of the presence of a geometric discontinuity (semicircular notches) and the orientation of fibers in the layers (anisotropy). The semicircular notches are located in longitudinal section (with a reduction in cross section) of the same. In this analysis, the anisotropy is characterized by types of configurations (with different orientations of fibers in the outer layers). A comparative study of mechanical properties with and without the presence of notches is developed. Both configurations consist of four layers of woven jute fiber bidirectional and a central layer of bidirectional woven glass fibers. In addition to the mechanical properties was also studied the characteristics of the fracture developed in each composite laminate. The results showed that in the comparative study, the anisotropy and the presence of semicircular notches directly influences the mechanical behavior of laminates composites, mainly in reducing the tensile strength, and well as the final characteristics of the fracture
Resumo:
Use of natural fibres as a reinforcement material in the manufacture of composites show a series of advantages: availability, biodegradability, low weight and regeneration in relation to synthetic fibres, thus justifying its utilization. In the present research work, composites were developed with chicken feathers (KF), using unsaturated polyester resin as matrix, for diversified applications, mainly in the furniture/timber industry.At present, in Brazil the chicken feathers are used as part of the animal feed, even though this material possesses low aggregated value. The chicken feathers are hollow, light and resistant. After washing with water at room temperature, a part of the chicken feathers were treated with 2% NaOH. Composites were manufactured using treated and untreated chicken feathers with unsaturated orthothalic polyester resin and 1% peroxide as catalyser, obtained in the commerce. Samples with size 150x25x3 mm for mechanical tests were cut by laser in the composite plate. Mechanical analyses were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN. All the analyses were in accordance with ASTM standards. SEM analyses were also carried out on the samples.In the analyses of the results obtained, it was observed that the composites made with untreated chicken feathers showed better results (Traction 11.406 MPa and 9.107 MPa Bending 34.947 and 20.918 MPa for samples with and without treatment respectively) compared to the composite with treated feathers. Very low values of the water absorption results, evidenced the impermeability characteristic of the feathers. From the SEM images, the structure, fracture and the fibre/matrix adsorption can be evidenced. In the flammability test, it was observed that despite the feathers having sulfur as a constituent, natural inhibitor of flame, no burning support of the composites, because the manufacturing process of the composite
Resumo:
The utilization of synthetic fibers for plastic reinforcement is more and more frequent and this growing interest requires that their mechanic behavior under the most variable conditions of structural applications be known. The use of such materials in the open and exposed to the elements is one of them. In this case, it becomes extremely necessary to study their mechanical properties (strength, stiffness) and the mechanism of fracture by which the environment aging them out. In order to do that, the material must be submitted to hot steam and ultraviolet radiation exposure cycles, according to periods of time determined by the norms. This study proposal deals with the investigation of accelerated environmental aging in two laminated polymeric composites reinforced by hybrid woven made up of synthetic fibers. The configurations of the laminated composites are defined as: one laminate reinforced with hybrid woven of glass fibers/E and Kevlar fibers/49 (LHVK) and the other laminate is reinforced with hybrid tissue of glass fibers/E and of carbon fibers AS4 (LHVC). The woven are plane and bidirectional. Both laminates are impregnated with a thermofix resin called Derakane 470-300 Epoxy Vinyl-Ester and they form a total of four layers. The laminates were industrially manufactured and were made through the process of hand-lay-up. Comparative analyses were carried out between their mechanical properties by submitting specimen to uniaxial loading tractions and three-point flexion. The specimen were tested both from their original state, that is, without being environmentally aging out, and after environmental aging. This last state was reached by using the environmental aging chamber
Resumo:
The acquisition of machinery used in timber harvesting depends on high financial investment, which implies the need for assessments that allow defining more precisely, what is the machine or the whole more recommended for streamlining the operation. This study aimed to technically and economically evaluating the performance of a harvester in Eucalyptus forest harvest first cut. The technique analysis included a time and movements, productivity, efficiency operational and mechanical availability. The economic analysis included the parameters operational cost, harvesting cost and energy consumption. The results obtained from the technological-economic parameters evidenced that of Diameter at Breast Height directly influenced the productivity of harvester. Consequently the lower costs of forest harvest were obtained for the compartments with wider diameter trees.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A Área Amazônica (AA) é compartilhada por oito países sul-americanos independentes. Desde os tempos coloniais sentiu-se a necessidade da construção de uma via de união da AA com o Oceano Pacífico. Mas os Andes, em termos técnicos e econômicos, foram barreira insuperável até as últimas décadas do século XIX. Nos últimos anos, para o Brasil - país que tem perto de 60% da AA -, esta via vem se tornando cada vez mais importante em termos de exportação, especialmente para o mercado japonês, de grãos, madeira, polpa de madeira etc., ao mesmo tempo em que o Japão também deseja acesso direto à AA. Brasil e Peru, segundo país da AA, com a maior e mais ocidental costa no Pacífico, têm desenvolvido projetos para a construção de uma estrada, contando para isso com apoio financeiro oferecido pelo Japão em diversas oportunidades. Tais projetos tentam conciliar não apenas os interesses de Brasil e Peru, mas também os da Bolívia, país mediterrâneo que poderia finalmente ter acesso livre à costa do Pacífico. Os Estados Unidos, porém, opõem-se a construção da mencionada via e, o projeto está a espera de que o financiamento anteriormente aventado permita sua concretização. Parece que, na construção da projetada estrada, interesses estratégicos das grandes potências mundiais estão envolvidos.