963 resultados para Genus Homo
Resumo:
BACKGROUND: The Mannheimia subclades belong to the same bacterial genus, but have taken divergent paths toward their distinct lifestyles. For example, M. haemolytica + M. glucosida are potential pathogens of the respiratory tract in the mammalian suborder Ruminantia, whereas M. ruminalis, the supposed sister group, lives as a commensal in the ovine rumen. We have tested the hypothesis that vertical inheritance of the leukotoxin (lktCABD) operon has occurred from the last common ancestor of genus Mannheimia to any ancestor of the diverging subclades by exploring gene order data. RESULTS: We examined the gene order in the 5' flanking region of the leukotoxin operon and found that the 5' flanking gene strings, hslVU-lapB-artJ-lktC and xylAB-lktC, are peculiar to M. haemolytica + M. glucosida and M. granulomatis, respectively, whereas the gene string hslVU-lapB-lktC is present in M. ruminalis, the supposed sister group of M. haemolytica + M. glucosida, and in the most ancient subclade M. varigena. In M. granulomatis, we found remnants of the gene string hslVU-lapB-lktC in the xylB-lktC intergenic region. CONCLUSION: These observations indicate that the gene string hslVU-lapB-lktC is more ancient than the hslVU-lapB-artJ-lktC and xylAB-lktC gene strings. The presence of (remnants of) the ancient gene string hslVU-lapB-lktC among any subclades within genus Mannheimia supports that it has been vertically inherited from the last common ancestor of genus Mannheimia to any ancestor of the diverging subclades, thus reaffirming the hypothesis of vertical inheritance of the leukotoxin operon. The presence of individual 5' flanking regions in M. haemolytica + M. glucosida and M. granulomatis reflects later genome rearrangements within each subclade. The evolution of the novel 5' flanking region in M. haemolytica + M. glucosida resulted in transcriptional coupling between the divergently arranged artJ and lkt promoters. We propose that the chimeric promoter have led to high level expression of the leukotoxin operon which could explain the increased potential of certain M. haemolytica + M. glucosida strains to cause a particular type of infection.
Resumo:
An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximately 141 thousand years ago (Kya), an exit out-of-Africa approximately 51 Kya, and a recent colonization of the Americas approximately 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.
Resumo:
In this study, we demonstrate the power of applying complementary DNA (cDNA) microarray technology to identifying candidate loci that exhibit subtle differences in expression levels associated with a complex trait in natural populations of a nonmodel organism. Using a highly replicated experimental design involving 180 cDNA microarray experiments, we measured gene-expression levels from 1098 transcript probes in 90 individuals originating from six brown trout (Salmo trutta) and one Atlantic salmon (Salmo salar) population, which follow either a migratory or a sedentary life history. We identified several candidate genes associated with preparatory adaptations to different life histories in salmonids, including genes encoding for transaldolase 1, constitutive heat-shock protein HSC70-1 and endozepine. Some of these genes clustered into functional groups, providing insight into the physiological pathways potentially involved in the expression of life-history related phenotypic differences. Such differences included the down-regulation of genes involved in the respiratory system of future migratory individuals. In addition, we used linear discriminant analysis to identify a set of 12 genes that correctly classified immature individuals as migratory or sedentary with high accuracy. Using the expression levels of these 12 genes, 17 out of 18 individuals used for cross-validation were correctly assigned to their respective life-history phenotype. Finally, we found various candidate genes associated with physiological changes that are likely to be involved in preadaptations to seawater in anadromous populations of the genus Salmo, one of which was identified to encode for nucleophosmin 1. Our findings thus provide new molecular insights into salmonid life-history variation, opening new perspectives in the study of this complex trait.
Resumo:
BACKGROUND: The Mannheimia species encompass a wide variety of bacterial lifestyles, including opportunistic pathogens and commensals of the ruminant respiratory tract, commensals of the ovine rumen, and pathogens of the ruminant integument. Here we present a scenario for the evolution of the leukotoxin promoter among representatives of the five species within genus Mannheimia. We also consider how the evolution of the leukotoxin operon fits with the evolution and maintenance of virulence. RESULTS: The alignment of the intergenic regions upstream of the leukotoxin genes showed significant sequence and positional conservation over a 225-bp stretch immediately proximal to the transcriptional start site of the lktC gene among all Mannheimia strains. However, in the course of the Mannheimia genome evolution, the acquisition of individual noncoding regions upstream of the conserved promoter region has occurred. The rate of evolution estimated branch by branch suggests that the conserved promoter may be affected to different extents by the types of natural selection that potentially operate in regulatory regions. Tandem repeats upstream of the core promoter were confined to M. haemolytica with a strong association between the sequence of the repeat units, the number of repeat units per promoter, and the phylogenetic history of this species. CONCLUSION: The mode of evolution of the intergenic regions upstream of the leukotoxin genes appears to be highly dependent on the lifestyle of the bacterium. Transition from avirulence to virulence has occurred at least once in M. haemolytica with some evolutionary success of bovine serotype A1/A6 strains. Our analysis suggests that changes in cis-regulatory systems have contributed to the derived virulence phenotype by allowing phase-variable expression of the leukotoxin protein. We propose models for how phase shifting and the associated virulence could facilitate transmission to the nasopharynx of new hosts.
Resumo:
Horses, asses and zebras belong to the genus Equus and are the only extant species of the family Equidae in the order Perissodactyla. In a previous work we demonstrated that a key factor in the rapid karyotypic evolution of this genus was evolutionary centromere repositioning, that is, the shift of the centromeric function to a new position without alteration of the order of markers along the chromosome. In search of previously undiscovered evolutionarily new centromeres, we traced the phylogeny of horse chromosome 5, analyzing the order of BAC markers, derived from a horse genomic library, in 7 Equus species (E. caballus, E. hemionus onager, E. kiang, E. asinus, E. grevyi, E. burchelli and E. zebra hartmannae). This analysis showed that repositioned centromeres are present in E. asinus (domestic donkey, EAS) chromosome 16 and in E. burchelli (Burchell's zebra, EBU) chromosome 17, confirming that centromere repositioning is a strikingly frequent phenomenon in this genus. The observation that the neocentromeres in EAS16 and EBU17 are in the same chromosomal position suggests that they may derive from the same event and therefore, E. asinus and E. burchelli may be more closely related than previously proposed; alternatively, 2 centromere repositioning events, involving the same chromosomal region, may have occurred independently in different lineages, pointing to the possible existence of hot spots for neocentromere formation. Our comparative analysis also showed that, while E. caballus chromosome 5 seems to represent the ancestral configuration, centric fission followed by independent fusion events gave rise to 3 different submetacentric chromosomes in other Equus lineages.
Resumo:
The new goblin spider genus Prethopalpus is restricted to the Australasian tropics, from the lower Himalayan Mountains in Nepal and India to the Malaysian Peninsula, Indonesia, Papua New Guinea, and Australia. Prethopalpus contains those species with a swollen palpal patella, which is one to two times the size of the femur, together with a cymbium and bulb that is usually separated, although it is largely fused in four species. The type species Opopaea fosuma Burger et al. from Sumatra, and Camptoscaphiella infernalis Harvey and Edward from Western Australia are newly transferred to Prethopalpus. The genus consists of 41 species of which 39 are newly described: P. ilam Baehr (♂, ♀) from Nepal; P. khasi Baehr (♂), P. madurai Baehr (♂), P. mahanadi Baehr (♂, ♀), and P. meghalaya Baehr (♂, ♀) from India; P. bali Baehr (♂), P. bellicosus Baehr and Thoma (♂, ♀), P. brunei Baehr (♂, ♀), P. deelemanae Baehr and Thoma (♂), P. java Baehr (♂, ♀), P. kranzae Baehr (♂), P. kropfi Baehr (♂, ♀), P. leuser Baehr (♂, ♀), P. magnocularis Baehr and Thoma (♂), P. pahang Baehr (♂), P. perak Baehr (♂, ♀), P. sabah Baehr (♂, ♀), P. sarawak Baehr (♂), P. schwendingeri Baehr (♂, ♀), and P. utara Baehr (♂, ♀) from Indonesia and Malaysia; and P. alexanderi Baehr and Harvey (♂), P. attenboroughi Baehr and Harvey (♂), P. blosfeldsorum Baehr and Harvey (♂), P. boltoni Baehr and Harvey (♂, ♀), P. callani Baehr and Harvey (♂, ♀), P. cooperi Baehr and Harvey (♂), P. eberhardi Baehr and Harvey (♂, ♀), P. framenaui Baehr and Harvey (♂, ♀), P. humphreysi Baehr and Harvey (♂, ♀), P. kintyre Baehr and Harvey (♂), P. scanloni Baehr and Harvey (♂), P. pearsoni Baehr and Harvey (♂), P. julianneae Baehr and Harvey (♂), P. maini Baehr and Harvey (♂, ♀), P. marionae Baehr and Harvey (♂, ♀), P. platnicki Baehr and Harvey (♂, ♀), P. oneillae Baehr and Harvey (♂), P. rawlinsoni Baehr and Harvey (♂), and P. tropicus Baehr and Harvey (♂, ♀) from Australia and Papua New Guinea. Three separate keys to species from different geographical regions are provided. Most species are recorded from single locations and only three species are more widely distributed. A significant radiation of blind troglobites comprising 14 species living in subterranean ecosystems in Western Australia is discussed. These include several species that lack abdominal scuta, a feature previously used to define subfamilies of Oonopidae.
Resumo:
From 1990 to 2000, the number of published named taxa based upon new isolates at species and genus levels in International Journal of Systematic and Evolutionary Microbiology, formerly International Journal of Systematic Bacteriology, have increased by approximately four- and sevenfold, respectively. New taxa based upon characterization of only a single isolate remained at around 40% for both categories. The Bacteriological Code (1990 Revision) has no recommendations on the number of strains required for definition of new taxa. For a few groups, a minimum number of 5-10 strains has been suggested in minimal standards. Since an exponential increase in new taxa can be expected in the future, the authors discuss problems related to naming new species and genera based upon descriptions of a single isolate and suggest that this practice is re-evaluated. It is proposed that the following should be added to Recommendation 30b of the Bacteriological Code: 'Descriptions should be based on as many strains as possible (minimum five), representing different sources with respect to geography and ecology in order to be well characterized both phenotypically and genotypically, to establish the centre (from which the type strain could be chosen) and the extent of the cluster to be named. In addition, comparative studies should be performed, including reference strains that represent neighbouring species and/or genera, in order to give descriptions that are sufficiently detailed to allow differentiation from these neighbours.'
Resumo:
Synthetic modified oligonucleotides are of interest for diagnostic and therapeutic applications, as their biological stability, pairing selectivity, and binding strength can be considerably increased by the incorporation of unnatural structural elements. Homo-DNA is an oligonucleotide homologue based on dideoxy-hexopyranosyl sugar moieties, which follows the Watson-Crick A-T and G-C base pairing system, but does not hybridize with complementary natural DNA and RNA. Homo-DNA has found application as a bioorthogonal element in templated chemistry applications. The gas-phase dissociation of homo-DNA has been investigated by ESI-MS/MS and MALDI-MS/MS, and mechanistic aspects of its gas-phase dissociation are discussed. Experiments revealed a charge state dependent preference for the loss of nucleobases, which are released either as neutrals or as anions. In contrast to DNA, nucleobase loss from homo-DNA was found to be decoupled from backbone cleavage, thus resulting in stable products. This renders an additional stage of ion activation necessary in order to generate sequence-defining fragment ions. Upon MS(3) of the primary base-loss ion, homo-DNA was found to exhibit unspecific backbone dissociation resulting in a balanced distribution of all fragment ion series.
Resumo:
We have developed an assay for single strand DNA or RNA detection which is based on the homo-DNA templated Staudinger reduction of the profluorophore rhodamine-azide. The assay is based on a three component system, consisting of a homo-DNA/DNA hybrid probe, a set of homo-DNA reporter strands and the target DNA or RNA. We present two different formats of the assay (Omega probe and linear probe) in which the linear probe was found to perform best with catalytic turnover of the reporter strands (TON: 8) and a match/mismatch discrimination of up to 19. The advantage of this system is that the reporting (homo-DNA) and sensing (DNA) domain are decoupled from each other since the two pairing systems are bioorthogonal. This allows independent optimization of either domain which may lead to higher selectivity in in vivo imaging.