968 resultados para Genotype,Mutation
Resumo:
Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for approximately 75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding alpha1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.
Resumo:
OBJECTIVES Individual mutations in the SCN5A-encoding cardiac sodium channel alpha-subunit cause single cardiac arrhythmia disorders, but a few cause multiple distinct disorders. Here we report a family harboring an SCN5A mutation (L1821fs/10) causing a truncation of the C-terminus with a marked and complex biophysical phenotype and a corresponding variable and complex clinical phenotype with variable penetrance. METHODS AND RESULTS A 12-year-old male with congenital sick sinus syndrome (SSS), cardiac conduction disorder (CCD), and recurrent monomorphic ventricular tachycardia (VT) had mutational analysis that identified a 4 base pair deletion (TCTG) at position 5464-5467 in exon 28 of SCN5A. The mutation was also present in six asymptomatic family members only two of which showed mild ECG phenotypes. The deletion caused a frame-shift mutation (L1821fs/10) with truncation of the C-terminus after 10 missense amino acid substitutions. When expressed in HEK-293 cells for patch-clamp study, the current density of L1821fs/10 was reduced by 90% compared with WT. In addition, gating kinetic analysis showed a 5-mV positive shift in activation, a 12-mV negative shift of inactivation and enhanced intermediate inactivation, all of which would tend to reduce peak and early sodium current. Late sodium current, however, was increased in the mutated channels. CONCLUSIONS The L1821fs/10 mutation causes the most severe disruption of SCN5A structure for a naturally occurring mutation that still produces current. It has a marked loss-of-function and unique phenotype of SSS, CCD and VT with incomplete penetrance.
Resumo:
Long QT syndrome (LQTS) is an arrhythmogenic ion channel disorder characterized by severely abnormal ventricular repolarization, which results in prolongation of the electrocardiographic QT interval. The condition is associated with sudden cardiac death due to malignant ventricular arrhythmias similar in form to the hallmark torsade de pointes. Eleven years after the identification of the principle cardiac channels involved in the condition, hundreds of mutations in, to date, 10 genes have been associated with the syndrome. Genetic investigations carried out up until the present have shown that, although the severe form of the disease is sporadic, there are a number of common polymorphisms in genes associated with the condition that may confer susceptibility to the development of torsade de pointes in some individuals, particularly when specific drugs are being administered. Moreover, some polymorphisms have been shown to have regulatory properties that either enhance or counteract a particular mutation's impact. Understanding of the molecular processes underlying the syndrome has enabled treatment to be optimized and has led to better survival among sufferers, thereby demonstrating a key correspondence between genotype, phenotype and therapy. Despite these developments, a quarter of patients do not have mutations in the genes identified to date. Consequently, LQTS continues to be an area of active research. This article contains a summary of the main clinical and genetic developments concerning the syndrome that have taken place during the last decade.
Resumo:
BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.
Resumo:
Long QT Syndrome (LQTS) is a cardiac channelopathy characterized by prolonged ventricular repolarization and increased risk to sudden death secondary to ventricular dysrrhythmias. Was the first cardiac channelopathy described and is probably the best understood. After a decade of the sentinel identification of ion channel mutation in LQTS, genotype-phenotype correlations have been developed along with important improvement in risk stratification and genetic guided-treatment. Genetic screening has shown that LQTS is more frequent than expected and interestingly, ethnic specific polymorphism conferring increased susceptibility to drug induced QT prolongation and torsades de pointes have been identified. A better understanding of ventricular arrhythmias as an adverse effect of ion channel binding drugs, allow the development of more safety formulas and better control of this public health problem. Progress in understanding the molecular basis of LQTS has been remarkable; eight different genes have been identified, however still 25% of patients remain genotype-negative. This article is an overview of the main LQTS knowledge developed during the last years.
Resumo:
Ectodermal dysplasias (EDs) are a large and heterogeneous group of hereditary disorders characterized by abnormalities in structures of ectodermal origin. Incontinentia pigmenti (IP) is an ED characterized by skin lesions evolving over time, as well as dental, nail, and ocular abnormalities. Due to X-linked dominant inheritance IP symptoms can only be seen in female individuals while affected males die during development in utero. We observed a family of horses, in which several mares developed signs of a skin disorder reminiscent of human IP. Cutaneous manifestations in affected horses included the development of pruritic, exudative lesions soon after birth. These developed into wart-like lesions and areas of alopecia with occasional wooly hair re-growth. Affected horses also had streaks of darker and lighter coat coloration from birth. The observation that only females were affected together with a high number of spontaneous abortions suggested an X-linked dominant mechanism of transmission. Using next generation sequencing we sequenced the whole genome of one affected mare. We analyzed the sequence data for non-synonymous variants in candidate genes and found a heterozygous nonsense variant in the X-chromosomal IKBKG gene (c.184C>T; p.Arg62*). Mutations in IKBKG were previously reported to cause IP in humans and the homologous p.Arg62* variant has already been observed in a human IP patient. The comparative data thus strongly suggest that this is also the causative variant for the observed IP in horses. To our knowledge this is the first large animal model for IP.
Resumo:
Mammals are unable to synthesize cobalamin or vitamin B12 and rely on the uptake of dietary cobalamin. The cubam receptor expressed on the intestinal endothelium is required for the uptake of cobalamin from the gut. Cubam is composed of two protein subunits, amnionless and cubilin, which are encoded by the AMN and CUBN genes respectively. Loss-of-function mutations in either the AMN or the CUBN gene lead to hereditary selective cobalamin malabsorption or Imerslund-Gräsbeck syndrome (IGS). We investigated Beagles with IGS and resequenced the whole genome of one affected Beagle at 15× coverage. The analysis of the AMN and CUBN candidate genes revealed a homozygous deletion of a single cytosine in exon 8 of the CUBN gene (c.786delC). This deletion leads to a frameshift and early premature stop codon (p.Asp262Glufs*47) and is, thus, predicted to represent a complete loss-of-function allele. We tested three IGS-affected and 89 control Beagles and found perfect association between the IGS phenotype and the CUBN:c.786delC variant. Given the known role of cubilin in cobalamin transport, which has been firmly established in humans and dogs, our data strongly suggest that the CUBN:c.786delC variant is causing IGS in the investigated Beagles.
Resumo:
Hereditary nasal parakeratosis (HNPK), an inherited monogenic autosomal recessive skin disorder, leads to crusts and fissures on the nasal planum of Labrador Retrievers. We performed a genome-wide association study (GWAS) using 13 HNPK cases and 23 controls. We obtained a single strong association signal on chromosome 2 (p(raw) = 4.4×10⁻¹⁴). The analysis of shared haplotypes among the 13 cases defined a critical interval of 1.6 Mb with 25 predicted genes. We re-sequenced the genome of one case at 38× coverage and detected 3 non-synonymous variants in the critical interval with respect to the reference genome assembly. We genotyped these variants in larger cohorts of dogs and only one was perfectly associated with the HNPK phenotype in a cohort of more than 500 dogs. This candidate causative variant is a missense variant in the SUV39H2 gene encoding a histone 3 lysine 9 (H3K9) methyltransferase, which mediates chromatin silencing. The variant c.972T>G is predicted to change an evolutionary conserved asparagine into a lysine in the catalytically active domain of the enzyme (p.N324K). We further studied the histopathological alterations in the epidermis in vivo. Our data suggest that the HNPK phenotype is not caused by hyperproliferation, but rather delayed terminal differentiation of keratinocytes. Thus, our data provide evidence that SUV39H2 is involved in the epigenetic regulation of keratinocyte differentiation ensuring proper stratification and tight sealing of the mammalian epidermis.
Resumo:
Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies.
Resumo:
We describe a mild form of disproportionate dwarfism in Labrador Retrievers, which is not associated with any obvious health problems such as secondary arthrosis. We designate this phenotype as skeletal dysplasia 2 (SD2). It is inherited as a monogenic autosomal recessive trait with incomplete penetrance primarily in working lines of the Labrador Retriever breed. Using 23 cases and 37 controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 4.44 Mb interval on chromosome 12. We re-sequenced the genome of one affected dog at 30x coverage and detected 92 non-synonymous variants in the critical interval. Only two of these variants, located in the lymphotoxin A (LTA) and collagen alpha-2(XI) chain gene (COL11A2), respectively, were perfectly associated with the trait. Previously described COL11A2 variants in humans or mice lead to skeletal dysplasias and/or deafness. The dog variant associated with disproportionate dwarfism, COL11A2:c.143G>C or p.R48P, probably has only a minor effect on collagen XI function, which might explain the comparatively mild phenotype seen in our study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of COL11A2 mutations. We speculate that non-pathogenic COL11A2 variants might even contribute to the heritable variation in height.
MEN1 Gene Mutation and Reduced Expression Are Associated With Poor Prognosis in Pulmonary Carcinoids
Resumo:
Context: MEN1 gene alterations have been implicated in lung carcinoids, but their effect on gene expression and disease outcome is unknown. Objective: Our objective was to analyze MEN1 gene and expression anomalies in lung neuroendocrine neoplasms and their correlations with clinicopathologic data and disease outcome. Design: We examined 74 lung neuroendocrine neoplasms including 58 carcinoids and 16 high-grade neuroendocrine carcinomas (HGNECs) for MEN1 mutations (n = 70) and allelic losses (n = 69), promoter hypermethylation (n = 65), and mRNA (n = 74) expression. Results were correlated with disease outcome. Results: MEN1 mutations were found in 7 of 55 (13%) carcinoids and in 1 HGNEC, mostly associated with loss of the second allele. MEN1 decreased expression levels correlated with the presence of mutations (P = .0060) and was also lower in HGNECs than carcinoids (P = .0024). MEN1 methylation was not associated with mRNA expression levels. Patients with carcinoids harboring MEN1 mutation and loss had shorter overall survival (P = .039 and P = .035, respectively) and low MEN1 mRNA levels correlated with distant metastasis (P = .00010) and shorter survival (P = .0071). In multivariate analysis, stage and MEN1 allelic loss were independent predictors of prognosis. Conclusion: Thirteen percent of pulmonary carcinoids harbor MEN1 mutation associated with reduced mRNA expression and poor prognosis. Also in mutation-negative tumors, low MEN1 gene expression correlates with an adverse disease outcome. Hypermethylation was excluded as the underlying mechanism.
Resumo:
Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.
Resumo:
CONTEXT Lipoid congenital adrenal hyperplasia (CAH) is the most severe form of CAH leading to impaired production of all adrenal and gonadal steroids. Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid CAH. OBJECTIVE We investigated three unrelated patients of Swiss ancestry who all carried novel mutations in the StAR gene. All three subjects were phenotypic females with absent Müllerian derivatives, 46,XY karyotype, and presented with adrenal failure. METHODS AND RESULTS StAR gene analysis showed that one patient was homozygous and the other two were heterozygous for the novel missense mutation L260P. Of the heterozygote patients, one carried the novel missense mutation L157P and one had a novel frameshift mutation (629-630delCT) on the second allele. The functional ability of all three StAR mutations to promote pregnenolone production was severely attenuated in COS-1 cells transfected with the cholesterol side-chain cleavage system and mutant vs. wild-type StAR expression vectors. CONCLUSIONS These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy; expand the geographic distribution of this condition; and finally establish a new, prevalent StAR mutation (L260P) for the Swiss population.
Resumo:
OBJECTIVE To study clinical, morphological and molecular characteristics in a Swiss family with autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI). PARTICIPANTS AND METHODS A 15-month-old girl presenting with symptoms of polydipsia and polyuria was investigated by water deprivation test. Evaluation of the family revealed three further family members with symptomatic vasopressin-deficient diabetes insipidus. T1-weighted magnetic resonance images of the posterior pituitary were taken in two affected adult family members and molecular genetic analysis was performed in all affected individuals. RESULTS The water deprivation test in the 15-month-old child confirmed the diagnosis of vasopressin-deficient diabetes insipidus and the pedigree was consistent with autosomal dominant inheritance. The characteristic bright spot of the normal vasopressin-containing neurophypophysis was absent in both adults with adFNDI. Direct sequence analysis revealed a new deletion (177-179DeltaCGC) in exon 2 of the AVP-NP II gene in all affected individuals. At the amino acid level, this deletion eliminates cysteine 59 (C59Delta) and substitutes alanine 60 by tryptophan (A60W) in the AVP-NP II precursor; interestingly, the remainder of the reading frame remains unchanged. According to the three-dimensional structure of neurophysin, C59 is involved in a disulphide bond with C65. CONCLUSIONS Deletion of C59 and substitution of A60W in the AVP-NP II precursor is predicted to disrupt one of the seven disulphide bridges required for correct folding of the neurophysin moiety and thus disturb the function of neurophysin as the vasopressin transport protein. These data are in line with the clinical and morphological findings in the reported family with adFNDI.
Resumo:
We identified a new point mutation in the CYP19 gene responsible for aromatase (P450arom) deficiency in a 46,XY male infant with unremarkable clinical findings at birth. This boy is homozygote for a 1-bp (C) deletion in exon 5 of the aromatase gene causing a frame-shift mutation. The frame-shift results in a prematurely terminated protein that is inactive due to the absence of the functional regions of the enzyme. Aromatase deficiency was suspected prenatally because of the severe virilization of the mother during the early pregnancy, and the diagnosis was confirmed shortly after birth. Four weeks after birth, the baby boy showed extremely low levels of serum estrogens, but had a normal level of serum free testosterone; in comparison with the high serum concentration of androstenedione at birth, a striking decrease occurred by 4 weeks postnatally. We previously reported elevated basal and stimulated FSH levels in a female infant with aromatase deficiency in the first year of life. In contrast, in the male infant, basal FSH and peak FSH levels after standard GnRH stimulation tests were normal. This finding suggests that the contribution of estrogen to the hypothalamic-pituitary gonadotropin-gonadal feedback mechanism is different in boys and girls during infancy and early childhood. In normal girls, serum estradiol concentrations strongly correlate with circulating inhibin levels, and thus, low inhibin levels may contribute to the striking elevation of FSH in young girls with aromatase deficiency. In contrast, estradiol levels are physiologically about a 7-fold lower in boys than in girls, and serum inhibin levels remain elevated even though levels of FSH, LH, and testosterone are decreased.