975 resultados para Geary, John White, 1819-1873.
Resumo:
We fabricated a phosphor-conversion white light using an InGaN laser diode that emits 445 nm and phosphor that emits in the yellow region when excited by the blue laser light. At 500 mA injection current the luminous flux and the luminous efficacy were 113 lm and 44 lm/W, respectively. The relationship of the luminous flux and the luminous efficacy of the white light with an injection current were discussed. Based on the evaluation method for luminous efficacy of light sources established by the Commission International de I'Eclairage (CIE) and the phosphor used in this experiment, a theoretical analysis of the experiment results and the maximum luminous efficacy of this white light fabrication method were also presented.
Resumo:
Characteristics of white organic light-emitting devices based on phosphor sensitized fluorescence are improved by using a multiple-emissive-layer structure, in which a phosphorescent blue emissive layer is sandwiched between red and green&yellow ones. In this device, bis[(4,6-difluorophenyl)-pyridinato-N,C-2] (picolinato), bis(2,4-diphenyl-quinoline) iridium (III) acetylanetonate, fac bis (2-phenylpyridine) iridium, and 5,6,11,12-tetraphenylnaphthacene are used as blue, red, green, and yellow emitters, respectively.
Resumo:
A star-like white light-emitting polymer with an orange emissive core and four blue emissive arms is designed and synthesized. White electroluminescence is observed with simultaneous orange emission from the core and blue emission from the arms. A single-layer device based on this polymer emits white light with CIE coordinates of (0.35, 0.39) and a luminous efficiency of 7.06 cd A(-1).
Resumo:
A novel series of white light emitting single polymers are prepared by incorporating low contents of quinacridone into the main chain of polyfluorene. This is the first report of quinacridone-containing conjugated polymer. Single layer devices (ITO/PEDOT:PSS/polymer/Ca/Al) are fabricated with these polymers. Energy transfer from fluorene segments to quinacridone unit is observed. Moreover, in the EL process, quinacridone unit can trap electrons and cannot trap holes from fluorene segments.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
White light emission from amplified spontaneous emission (ASE) was realized by optically pumping fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped semiconducting poly(9,9-dioctylfluorene) (PFO) polymer thin films. Two individual ASE peaks originating from DCJTB and PFO were observed by carefully controlling the DCJTB concentration in PFO. The studies of the ASE characteristics of DCJTB:PFO thin films lead to the conclusion that the DCJTB:PFO system with 0.3% w/w DCJTB dopant concentration in PFO showed the best ASE performance.
Resumo:
Efficient white organic light-emitting diodes (WOLEDs) using europium complex as the red unit are presented. The WOLEDs were fabricated by using the structure of indium tin oxide (ITO)/N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB)/4,4-N, N-dicarbazolebiphenyl (CBP) : bis(2,4-diphenylquinolyl-N, C-2) iridium (acetylacetonate) ((PPQ)(2)Ir(acac)) : Eu (III) tris(thenoyltrifluoroacetone) 3,4,7,8-tetramethyl-1,10-phenanthroline (Eu(TTA)(3)(Tmphen))/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN) : p-bis (p-N, N-di-phenyl-aminostyryl)benzene (DSA-Ph)/9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/tris(8-hydroxyquinoline) aluminium (Alq3)/LiF/Al.
Resumo:
White light emission from tandem organic light-emitting diodes consisting of blue and red light units separated by a transparent interconnecting layer of Al/WO3/Au has been realized. The devices have a structure of indium-tin-oxide (ITO)/molybdenum oxide (MoO3) (8 nm)/N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB)(100 nm)/p-bis(p-N, N-diphenyl-aminostyryl) benzene) (DSA-ph): 2-methyl-9,10-di(2-naphthyl) anthracene (MADN)(40 nm)/tris(8-hydroxylquinoline) aluminium (Alq(3)) (10 nm)/LiF(1 nm)/Al(2 nm)/WO3(3 nm)/Au(16 nm)/MoO3(5 nm)/NPB(60 nm)/Alq(3): 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)(30 nm)/Alq3(30 nm)/LiF(1 nm)/Al(150 nm).
Resumo:
We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.