887 resultados para Ganglia, Autonomic
Resumo:
Several studies showed that sleep loss/fragmentation may have a negative impact on cognitive performance, mood and autonomic activity. Specific neurocognitive domains, such as executive function (i.e.,prefrontal cortex), seems to be particularly vulnerable to sleep loss. Pearson et al.(2006) evaluated 16 RLS patients compared to controls by cognitive tests, including those particularly sensitive to prefrontal cortical (PFC) functioning and sleep loss. RLS patients showed significant deficits on two of the three PFC tests. It has been recently reported that RLS is associated with psychiatric manifestations. A high prevalence of depressive symptoms has been found in patients with RLS(Rothdach AJ et al., 2000). RLS could cause depression through its adverse influences on sleep and energy. On the other hand, symptoms of depression such as sleep deprivation, poor nutrition or lack of exercise may predispose an individual to the development of RLS. Moreover, depressed patients may amplify mild RLS, making occasional RLS symptoms appear to meet threshold criteria. The specific treatment of depression could be also implicated, since antidepressant compounds may worsen RLS and PLMD(Picchietti D et al., 2005; Damsa C et al., 2004). Interestingly, treatments used to relieve RLS symptoms (dopamine agonists) seem to have an antidepressant effects in RLS depressed patients(Saletu M et al., 2002&2003). During normal sleep there is a well-regulated pattern of the autonomic function, modulated by changes in sleep stages. It has been reported that chronic sleep deprivation is associated with cardiovascular events. In patients with sleep fragmentation increased number of arousals and increased cyclic alternating pattern rate is associated with an increase in sympathetic activity. It has been demonstrated that PLMS occurrence is associated with a shift to increased sympathetic activity without significant changes in cardiac parasympathetic activity (Sforza E et al., 2005). An increased association of RLS with hypertension and heart disease has been documented in several studies(Ulfberg J et al., 2001; Ohayon MM et al., 2002).
Resumo:
La ricerca riguarda l’inclusione di dichiarazioni di diritti e principi introdotte negli Statuti di autonomia delle Regioni italiane e delle Comunità Autonome spagnole riformati negli ultimi anni. La tesi consta, oltre che nell’introduzione dei concetti preliminari, di due parti per ognuno dei Paesi nelle quali si esaminano i sistemi regionali e concretamente queste carte di diritti e principi. La terza parte raccoglie un’analisi comparativa di ambedue gli Stati. Il problema dell’efficacia di questi diritti e principi rappresenta la chiave fondamentale. In questo senso, la Giurisprudenza costituzionale risulta essere basilare per lo studio delle differenti risposte alle novità dei diversi elenchi di diritti e principi a livello regionale. Mentre la Corte Costituzionale italiana ha negato la loro efficacia giuridica, anche come norme programmatiche assimilabili a quelle costituzionali, il Tribunale Costituzionale spagnolo ha qualificato un nuovo tipo di diritto, i c. d. diritti statutari, che non sono diritti pubblici soggettivi ma mandati ai poteri pubblici autonomici, specialmente al legislatore autonomico. Lo studio si completa con la problematica dell’uguaglianza e la garanzia dei diritti e i principi in questi Stati composti.
Resumo:
La possibilità di indurre stati ipotermici ed ipometabolici come il torpore o l’ibernazione in animali non ibernanti può avere dei risvolti utili nella pratica medica, in quanto permetterebbe di trarre vantaggio dagli effetti benefici dell’ipotermia senza gli effetti compensatori negativi causati dalla risposta omeostatica dell’organismo. Con questo lavoro vogliamo proporre un nuovo approccio, che coinvolge il blocco farmacologico dell’attività dei neuroni nel bulbo rostroventromediale (RVMM), un nucleo troncoencefalico che si è rivelato essere uno snodo chiave nella regolazione della termogenesi attraverso il controllo dell’attività del tessuto adiposo bruno, della vasomozione cutanea e del cuore. Nel nostro esperimento, sei iniezioni consecutive del agonista GABAA muscimolo nel RVMM, inducono uno stato reversibile di profonda ipotermia (21°C al Nadir) in ratti esposti ad una temperatura ambientale di 15°C. Lo stato ipotermico/ipomentabolico prodotto dall’inibizione dei neuroni del RVMM mostra forti similitudini col torpore naturale, anche per quanto concerne le modificazioni elettroencefalografiche osservate durante e dopo la procedura. Come negli ibernati naturali, nei ratti cui viene inibito il controllo della termogenesi si osserva uno spostamento verso le regioni lente delle spettro di tutte le frequenze dello spettro EEG durante l’ipotermia, ed un forte incremento dello spettro EEG dopo il ritorno alla normotermia, in particolare della banda Delta (0,5-4Hz) durante il sonno NREM. Per concludere, questi risultati dimostrano che l’inibizione farmacologica selettiva di un nucleo troncoencefalico chiave nel controllo della termogenesi è sufficiente per indurre uno stato di psuedo-torpore nel ratto, una specie che non presenta stati di torpore spontaneo. Un approccio di questo tipo può aprire nuove prospettive per l’utilizzo in ambito medico dell’ipotermia.
Resumo:
Introduction and Background: Multiple system atrophy (MSA) is a sporadic, adult-onset, progressive neurodegenerative disease characterized clinically by parkinsonism, cerebellar ataxia, and autonomic failure. We investigated cognitive functions longitudinally in a group of probable MSA patients, matching data with sleep parameters. Patients and Methods: 10 patients (7m/3f) underwent a detailed interview, a general and neurological examination, laboratory exams, MRI scans, a cardiovascular reflexes study, a battery of neuropsychological tests, and video-polysomnographic recording (VPSG). Patients were revaluated (T1) a mean of 16±5 (range: 12-28) months after the initial evaluation (T0). At T1, the neuropsychological assessment and VPSG were repeated. Results: The mean patient age was 57.8±6.4 years (range: 47-64) with a mean age at disease onset of 53.2±7.1 years (range: 43-61) and symptoms duration at T0 of 60±48 months (range: 12-144). At T0, 7 patients showed no cognitive deficits while 3 patients showed isolated cognitive deficits. At T1, 1 patient worsened developing multiple cognitive deficits from a normal condition. At T0 and T1, sleep efficiency was reduced, REM latency increased, NREM sleep stages 1-2 slightly increased. Comparisons between T1 and T0 showed a significant worsening in two tests of attention and no significant differences of VPSG parameters. No correlation was found between neuropsychological results and VPSG findings or RBD duration. Discussion and Conclusions: The majority of our patients do not show any cognitive deficits at T0 and T1, while isolated cognitive deficits are present in the remaining patients. Attention is the cognitive function which significantly worsened. Our data confirm the previous findings concerning the prevalence, type and the evolution of cognitive deficits in MSA. Regarding the developing of a condition of dementia, our data did not show a clear-cut diagnosis of dementia. We confirm a mild alteration of sleep structure. RBD duration does not correlate with neuropsychological findings.
Resumo:
The aim of this thesis is the study of techniques for efficient management and use of the spectrum based on cognitive radio technology. The ability of cognitive radio technologies to adapt to the real-time conditions of its operating environment, offers the potential for more flexible use of the available spectrum. In this context, the international interest is particularly focused on the “white spaces” in the UHF band of digital terrestrial television. Spectrum sensing and geo-location database have been considered in order to obtain information on the electromagnetic environment. Different methodologies have been considered in order to investigate spectral resources potentially available for the white space devices in the TV band. The adopted methodologies are based on the geo-location database approach used either in autonomous operation or in combination with sensing techniques. A novel and computationally efficient methodology for the calculation of the maximum permitted white space device EIRP is then proposed. The methodology is suitable for implementation in TV white space databases. Different Italian scenarios are analyzed in order to identify both the available spectrum and the white space device emission limits. Finally two different applications of cognitive radio technology are considered. The first considered application is the emergency management. The attention is focused on the consideration of both cognitive and autonomic networking approaches when deploying an emergency management system. The cognitive technology is then considered in applications related to satellite systems. In particular a hybrid cognitive satellite-terrestrial is introduced and an analysis of coexistence between terrestrial and satellite networks by considering a cognitive approach is performed.
Resumo:
The central point of this work is the investigation of neurogenesis in chelicerates and myriapods. By comparing decisive mechanisms in neurogenesis in the four arthropod groups (Chelicerata, Crustacea, Insecta, Myriapoda) I was able to show which of these mechanisms are conserved and which developmental modules have diverged. Thereby two processes of embryonic development of the central nervous system were brought into focus. On the one hand I studied early neurogenesis in the ventral nerve cord of the spiders Cupiennius salei and Achaearanea tepidariorum and the millipede Glomeris marginata and on the other hand the development of the brain in Cupiennius salei.rnWhile the nervous system of insects and crustaceans is formed by the progeny of single neural stem cells (neuroblasts), in chelicerates and myriapods whole groups of cells adopt the neural cell fate and give rise to the ventral nerve cord after their invagination. The detailed comparison of the positions and the number of the neural precursor groups within the neuromeres in chelicerates and myriapods showed that the pattern is almost identical which suggests that the neural precursors groups in these arthropod groups are homologous. This pattern is also very similar to the neuroblast pattern in insects. This raises the question if the mechanisms that confer regional identity to the neural precursors is conserved in arthropods although the mode of neural precursor formation is different. The analysis of the functions and expression patterns of genes which are known to be involved in this mechanism in Drosophila melanogaster showed that neural patterning is highly conserved in arthropods. But I also discovered differences in early neurogenesis which reflect modifications and adaptations in the development of the nervous systems in the different arthropod groups.rnThe embryonic development of the brain in chelicerates which was investigated for the first time in this work shows similarities but also some modifications to insects. In vertebrates and arthropods the adult brain is composed of distinct centres with different functions. Investigating how these centres, which are organised in smaller compartments, develop during embryogenesis was part of this work. By tracing the morphogenetic movements and analysing marker gene expressions I could show the formation of the visual brain centres from the single-layered precheliceral neuroectoderm. The optic ganglia, the mushroom bodies and the arcuate body (central body) are formed by large invaginations in the peripheral precheliceral neuroectoderm. This epithelium itself contains neural precursor groups which are assigned to the respective centres and thereby build the three-dimensional optical centres. The single neural precursor groups are distinguishable during this process leading to the assumption that they carry positional information which might subdivide the individual brain centres into smaller functional compartments.rn
Resumo:
Obiettivo della tesi è stato quello di studiare il ruolo svolto dall’ipotalamo laterale (LH) nella regolazione dei processi di integrazione dell’attività autonomica e termoregolatoria con quella degli stati di veglia e sonno. A questo scopo, l’attività dell’LH è stata inibita per 6 ore (Esperimento A) mediante microiniezioni locali dell’agonista GABAA muscimolo nel ratto libero di muoversi, nel quale sono stati monitorati in continuo l’elelttroencefalogramma, l’elettromiogramma nucale, la pressione arteriosa (PA) e la temperatura ipotalamica (Thy) e cutanea. Gli animali sono stati studiati a temperatura ambientale (Ta) di 24°C e 10°C. I risultati hanno mostrato che l’inibizione acuta dell’LH riduce l’attività di veglia e sopprime la comparsa del sonno REM. Ciò avviene attraverso l’induzione di uno stato di sonno NREM caratterizzato da ipersincronizzazione corticale, con scomparsa degli stati transizionali al sonno REM. Quando l’animale è esposto a bassa Ta, tali alterazioni si associano a un ampio calo della Thy, che viene compensato da meccanismi vicarianti solo dopo un paio d’ore dall’iniezione. Sulla base di tali risultati, si è proceduto ad un ulteriore studio (Esperimento B) volto ad indagare il ruolo del neuropeptide ipocretina (prodotto in modo esclusivo a livello dell’LH) nei processi termoregolatori, mediante microiniezioni del medesimo nel bulbo rostrale ventromediale (RVMM), stazione cruciale della rete nervosa preposta all’attivazione dei processi termogenetici. La somministrazione di ipocretina è stata in grado di attivare la termogenesi e di potenziare la comparsa della veglia, con concomitante lieve incremento della PA e della frequenza cardiaca, quando effettuata alle Ta di 24°C o di 10°C, ma non alla Ta di 32°C. In conclusione, i risultati indicano che l’LH svolge un ruolo cruciale nella promozione degli stati di veglia e di sonno REM e, per tramite dell’ipocretina, interviene in modo coplesso a livello del RVMM nella regolazione dei processi di coordinamento dell'attività di veglia con quella termoregolatoria.
Resumo:
Pochi studi hanno indagato il profilo dei sintomi non-motori nella malattia di Parkinson associata al gene glucocerebrosidasi (GBA). Questo studio è mirato alla caratterizzazione dei sintomi non-motori, con particolare attenzione alla valutazione delle funzioni neurovegetativa, cognitiva e comportamentale, nel parkinsonismo associato a mutazione del gene GBA con la finalità di verificare se tali sintomi non-motori siano parte dello spettro clinico di questi pazienti. E’ stato condotto su una coorte di pazienti affetti da malattia di Parkinson che erano stati tutti sottoposti ad una analisi genetica per la ricerca di mutazioni in uno dei geni finora associati alla malattia di Parkinson. All’interno di questa coorte omogenea sono stati identificati due gruppi diversi in relazione al genotipo (pazienti portatori della mutazione GBA e pazienti non portatori di nessuna mutazione) e le caratteristiche non-motorie sono state confrontate nei due gruppi. Sono state pertanto indagati il sistema nervoso autonomo, mediante studio dei riflessi cardiovascolari e analisi dei sintomi disautonomici, e le funzioni cognitivo-comportamentali in pazienti affetti da malattia di Parkinson associata a mutazione del gene GBA. I risultati sono stati messi a confronto con il gruppo di controllo. Lo studio ha mostrato che i pazienti affetti da malattia di Parkinson associata a mutazione del gene GBA presentavano maggiore frequenza di disfunzioni ortosimpatiche, depressione, ansia, apatia, impulsività, oltre che di disturbi del controllo degli impulsi rispetto ai pazienti non portatori. In conclusione, i pazienti GBA positivi possono esprimere una sintomatologia non-motoria multidominio con sintomi autonomici, cognitivi e comportamentali in primo piano. Pertanto l’impostazione terapeutica in questi pazienti dovrebbe includere una accurata valutazione dei sintomi non-motori e un loro monitoraggio nel follow up clinico, allo scopo di ottimizzare i risultati e ridurre i rischi di complicazioni.
Resumo:
Background: cognitive impairment is one of the non motor features widely descripted in parkinsonian syndrome, it has been related to the motor characteristics of the parkinsonian syndrome, associated with neuropsychiatric dysfunction and the characteristic sleep and autonomic features. It has been shown to be highly prevalent at all disease stages and to contribute significantly to disability. Objectives: aim of this study is to evaluate longitudinally the cognitive and behavioral characteristics of patients with a parkinsonian syndrome at onset; to describe the cognitive and behavioral characteristics of each parkinsonian syndrome; to define in PD patients at onset the presence of MCI or Parkinson disease dementia; to correlate the cognitive and behavioral characteristics with the features of the parkinsonian syndrome and with the associated sleep and autonomic features. Results: we recruited 55 patients, 22 did not present cognitive impairment both at T0 and at T1. 18 patients presented a progression of cognitive impairment. Progressive cognitively impaired patients were older and presented the worst motor phenotype. Progression of cognitive impairment was not associated to sleep and autonomic features. Conclusion: the evaluation of cognitive impairment could not be useful as a predictor of a correct diagnosis but each non motor domain will help to clarify and characterize the motor syndrome. The diagnosis of parkinsonian disorders lies in building a clinical profile in conjunction with other clinical characteristics such as mode of presentation, disease progression, response to medications, sleep and autonomic features.
Resumo:
Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.
Resumo:
The measurement of inflammation by biomarkers not only documents clinically relevant infections but also offers an important tool to pin point potentially harmful effects of chronic psychosocial stressors. This article focuses firstly on basic biology of inflammation and lists main biomarkers currently used in psycho-physiologic research. In the second part, the effects of the hypothalamic-pituitary-adrenal (HPA) axis and the autonomic nervous system as pathways modulating stress-related inflammation are discussed. Furthermore, current evidence of how chronic psychosocial stressors are related to alterations in inflammatory activity is presented. In summary, job stress, low socioeconomic status, childhood adversities as well as life events, caregiver stress, and loneliness were all shown to exert effects on immunologic activity.
Resumo:
Pheochromocytomas are rare neoplasias of neural crest origin arising from chromaffin cells of the adrenal medulla and sympathetic ganglia (extra-adrenal pheochromocytoma). Pheochromocytoma that develop in rats homozygous for a loss-of-function mutation in p27Kip1 (MENX syndrome) show a clear progression from hyperplasia to tumor, offering the possibility to gain insight into tumor pathobiology. We compared the gene-expression signatures of both adrenomedullary hyperplasia and pheochromocytoma with normal rat adrenal medulla. Hyperplasia and tumor show very similar transcriptome profiles, indicating early determination of the tumorigenic signature. Overrepresentation of developmentally regulated neural genes was a feature of the rat lesions. Quantitative RT-PCR validated the up-regulation of 11 genes, including some involved in neural development: Cdkn2a, Cdkn2c, Neurod1, Gal, Bmp7, and Phox2a. Overexpression of these genes precedes histological changes in affected adrenal glands. Their presence at early stages of tumorigenesis indicates they are not acquired during progression and may be a result of the lack of functional p27Kip1. Adrenal and extra-adrenal pheochromocytoma development clearly follows diverged molecular pathways in MENX rats. To correlate these findings to human pheochromocytoma, we studied nine genes overexpressed in the rat lesions in 46 sporadic and familial human pheochromocytomas. The expression of GAL, DGKH, BMP7, PHOX2A, L1CAM, TCTE1, EBF3, SOX4, and HASH1 was up-regulated, although with different frequencies. Immunohistochemical staining detected high L1CAM expression selectively in 27 human pheochromocytomas but not in 140 nonchromaffin neuroendocrine tumors. These studies reveal clues to the molecular pathways involved in rat and human pheochromocytoma and identify previously unexplored biomarkers for clinical use.
Resumo:
Introduction Intracranial pressure monitoring is commonly implemented in patients with neurologic injury and at high risk of developing intracranial hypertension, to detect changes in intracranial pressure in a timely manner. This enables early and potentially life-saving treatment of intracranial hypertension. Case presentation An intraparenchymal pressure probe was placed in the hemisphere contralateral to a large basal ganglia hemorrhage in a 75-year-old Caucasian man who was mechanically ventilated and sedated because of depressed consciousness. Intracranial pressures were continuously recorded and never exceeded 17 mmHg. After sedation had been stopped, our patient showed clinical signs of transtentorial brain herniation, despite apparently normal intracranial pressures (less than 10 mmHg). Computed tomography revealed that the size of the intracerebral hematoma had increased together with significant unilateral brain edema and transtentorial herniation. The contralateral hemisphere where the intraparenchymal pressure probe was placed appeared normal. Our patient underwent emergency decompressive craniotomy and was tracheotomized early, but did not completely recover. Conclusions Intraparenchymal pressure probes placed in the hemisphere contralateral to an intracerebral hematoma may dramatically underestimate intracranial pressure despite apparently normal values, even in the case of transtentorial brain herniation.
Resumo:
Myocardial dysfunction appears in 25% of patients with severe sepsis and in 50% of patients with septic shock, even in the presence of hyper dynamic states. It is characterized by a reduction in left ventricle ejection fraction, that reverts at the seventh to tenth day of evolution. Right ventricular dysfunction and diastolic left ventricular dysfunction can also appear. There is no consensus if an increase in end diastolic volume is part of the syndrome. High troponin or brain natriuretic peptide levels are associated with myocardial dysfunction and a higher mortality. The pathogenesis of myocardial dysfunction is related to micro and macro circulatory changes, inflammatory response, oxidative stress, intracellular calcium management disturbances, metabolic changes, autonomic dysfunction, activation of apoptosis, mitochondrial abnormalities and a derangement in catecholaminergic stimulation. Since there is no specific treatment for myocardial dysfunction, its management requires an adequate multi systemic support to maintain perfusion pressures and systemic flows sufficient for the regional and global demands.
Resumo:
Functional gastrointestinal disorders (FGD) are highly prevalent worldwide. Recent research demonstrates that complex and interacting biological and behavioral mechanisms contribute particularly to the pathogenesis of irritable bowel syndrome and functional dyspepsia. Dysregulation of the enteral, neuroenteric, visceral-autonomic, and central nervous systems are important biological contributors, whereas the psychological state of a patient may evidently modulate aspects related to biological stress reactivity and somatic perception both playing a role in the clinical manifestation of FGD. Our overview clearly shows that an interdisciplinary perspective of the pathogenesis of FGD may best serve clinicians and patients.