922 resultados para Galba, Servius Sulpicius, Emperor of Rome, 3 B.C.-69 A.D.
Resumo:
Nutritional deficiencies, especially micronutrient deficiencies, can occur in obese individuals. Surgical treatment may aggravate or cause these deficiencies, depending on the type of procedure, food intake and the use of multivitamins, minerals or other supplements. The objective of the study was to evaluate the nutrient intake of women who had undergone Roux-en-Y gastric bypass (RYGB) surgery. A cross-sectional, controlled study was conducted among 44 women after RYGB (operated-group, OG; mean years post-operation = 3.4) and a control group of 38 healthy women (non-operated group, NOG) matched by age and economic condition. The women reported their dietary intake using a 4-day record. The Dietary Reference Intakes was used as a reference. The macronutrient contributions to dietary energy intake presented an acceptable distribution for proteins and carbohydrates. Lipid intake was high among women in the OG and the NOG (43.2 and 55.3 %, respectively). In the evaluation of micronutrients, a statistically significant difference was observed between the groups for iron, zinc and vitamins B1 and B12. Both groups were at high risk for inadequate calcium intake, and the OG was at risk for inadequate zinc, iron and vitamin B1 intake. The nutrient intake of women who had undergone RYGB is very similar to that of non-operated women, with the exception of a reduced intake of iron, zinc and vitamins B1 and B12, which may be due to the difficulty of consuming meat and a balanced diet. The findings of this study emphasize the importance of appropriate nutritional intervention and the regular use of multivitamin and mineral supplements for these patients.
Resumo:
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an "immune exhaustion'', with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28(-)CD57(+)CD8(+) T cells between the groups. However, the frequency of Tim-3(+)CD8(+) and Tim-3(+)CD4(+) exhausted T cells, but not PD-1(+) T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1(+)CD8(+) T cells were directly associated with T cell immune activation in children. The frequency of Tim-3(+)CD8(+) T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.
Resumo:
The ethanol electro-oxidation reaction was studied on carbon-supported Pt, Rh, and on Pt overlayers deposited on Rh nanoparticles. The synthesized electrocatalysts were characterized by TEM and XRD. The reaction products were monitored by on-line DEMS experiments. Potentiodynamic curves showed higher overall reaction rate for Pt/C when compared to that for Rh/C. However, on-line DEMS measurements revealed higher average current efficiencies for complete ethanol electro-oxidation to CO2 on Rh/C. The average current efficiencies for CO2 formation increased with temperature and with the decrease in the ethanol concentration. The total amount of CO2, on the other hand, was slightly affected by the temperature and ethanol concentration. Additionally, the CO2 signal was observed only in the positive-going scan, none being observed in the negative-going scan, evidencing that the C-C bond breaking occurs only at lower potentials. Thus, the formation of CO2 mainly resulted from oxidative removal of adsorbed CO and CHx,ad species generated at the lower potentials, instead of the electrochemical oxidation of bulk ethanol molecules. The acetaldehyde mass signal, however, was greatly favored after increasing the ethanol concentration from 0.01 to 0.1 mol L-1, on both electrocatalysts, indicating that it is the major reaction product. For the Pt/Rh/C-based electrocatalysts, the Faradaic current and the conversion efficiency for CO2 formation was increased by adjusting the amount of Pt on the surface of the Rh/C nanoparticles. The higher conversion efficiency for CO2 formation on the Pt1Rh/C material was ascribed to its faster and more extensive ethanol deprotonation on the Pt-Rh sites, producing adsorbed intermediates in which the C-C bond cleavage is facilitated. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Many pathways can be used to synthesize polythiophenes derivatives. The polycondensation reactions performed with organometallics are preferred since they lead to regioregular polymers (with high content of heat-to-tail coupling) which have enhanced conductivity and luminescence. However, these pathways have several steps; the reactants are highly moisture sensitive and expensive. On the other hand, the oxidative polymerization using FeCl3 is a one-pot reaction that requires less moisture sensitive reactants with lower cost, although the most common reaction conditions lead to polymers with low regioregularity. Here, we report that by changing the reaction conditions, such as FeCl3 addition rate and reaction temperature, poly-3-octylthiophenes with different the regioregularities can be obtained, reaching about 80% of heat-to-tail coupling. Different molar mass distributions and polydispersivities were obtained. The preliminary results suggest that the oxidative polymerization process could be improved to yield polythiophenes with higher regioregularity degree and narrower molar mass distributions by just setting some reaction conditions. We also verified that it is possible to solvent extract part of the lower regioregular fraction of the polymer further improving the regioregularity degree. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
AIM: To evaluate for the first time the protein and mRNA expression of 14-3-3 epsilon in gastric carcinogenesis. METHODS: 14-3-3 epsilon protein expression was determined by western blotting, and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples. RESULTS: Authors observed a significant reduction of 14-3-3 epsilon protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue, Reduced levels of 14-3-3 epsilon were also associated with diffuse-type GC and early-onset of this pathology. Our data suggest that reduced 14-3-3 epsilon may have a role in gastric carcinogenesis process. CONCLUSION: Our results reveal that the reduced 14-3-3 epsilon expression in GC and investigation of 14-3-3 epsilon interaction partners may help to elucidate the carcinogenesis process. (C) 2012 Baishideng. All rights reserved.
Resumo:
The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T-3) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T-3 effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T-3 on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T-3 was investigated. Our data confirmed that T-3 rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T-3. In addition, T-3 rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T-3 treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T-3 exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T-3 rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes. Journal of Molecular Endocrinology (2012) 49, 11-20
Resumo:
The goal of this study was to evaluate if the immunohistochemical expression of alpha-3 neuronal nicotinic acetylcholine receptor subunit in sympathetic ganglia remains stable after brain death, determining the possible use of sympathetic thoracic ganglia from subjects after brain death as study group. The third left sympathetic ganglion was resected from patients divided in two groups: BD-organ donors after brain death and CON-patients submitted to sympathectomy for hyperhidrosis (control group). Immunohistochemical staining for alpha-3 neuronal nicotinic acetylcholine receptor subunit was performed; strong and weak expression areas were quantified in both groups. The BD group showed strong alpha-3 neuronal nicotinic acetylcholine receptor expression in 6.55% of the total area, whereas the CON group showed strong expression in 5.91% (p = 0.78). Weak expression was found in 6.47% of brain-dead subjects and in 7.23% of control subjects (p = 0.31). Brain death did not affect the results of the immunohistochemical analysis of sympathetic ganglia, and its use as study group is feasible.
Resumo:
Xyloglucan is a major structural polysaccharide of the primary (growing) cell wall of higher plants. It consists of a cellulosic backbone (beta-1,4-linked glucosyl residues) that is frequently substituted with side chains. This report describes Aspergillus nidulans strain A773 recombinant secretion of a dimeric xyloglucan-specific endo-beta-1,4-glucanohydrolase (XegA) cloned from Aspergillus niveus. The ORF of the A. niveus xegA gene is comprised of 714 nucleotides, and encodes a 238 amino acid protein with a calculated molecular weight of 23.5 kDa and isoelectric point of 4.38. The optimal pH and temperature were 6.0 and 60 degrees C, respectively. XegA generated a xyloglucan-oligosaccharides (XGOs) pattern similar to that observed for cellulases from family GH12, i.e., demonstrating that its mode of action includes hydrolysis of the glycosidic linkages between glucosyl residues that are not branched with xylose. In contrast to commercial lichenase, mixed linkage beta-glucan (lichenan) was not digested by XegA, indicating that the enzyme did not cleave glucan beta-1,3 or beta-1,6 bonds. The far-UV CD spectrum of the purified enzyme indicated a protein rich in beta-sheet structures as expected for GH12 xyloglucanases. Thermal unfolding studies displayed two transitions with mid-point temperatures of 51.3 degrees C and 81.3 degrees C respectively, and dynamic light scattering studies indicated that the first transition involves a change in oligomeric state from a dimeric to a monomeric form. Since the enzyme is a predominantly a monomer at 60 degrees C. the enzymatic assays demonstrated that XegA is more active in its monomeric state. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Diffuse large B-Cell lymphoma is the most common subtype of non-Hodgkin lymphoma in the West. In Brazil, it is the fifth cause of cancer, with more than 55,000 cases and 26,000 deaths per year. At Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - HCFMUSP, diffuse large B-Cell lymphoma represents 49.7% of all non-Hodgkin lymphoma cases. Initially, the classification of non-Hodgkin lymphoma was based on morphology, but advances in immunology and molecular medicine allowed the introduction of a biological classification for these diseases. As for other cancers, non-Hodgkin lymphoma involves patterns of multi factorial pathogenesis with environmental factors, as well as genetic, occupational and dietary factors, contributing to its development. Multiple lesions involving molecular pathways of B-cell proliferation and differentiation may result in the activation of oncogenes such as the BCL2, BCL6,and MYC genes and the inactivation of tumor suppressor genes such as p53 and INK4, as well as other important transcription factors such as OCT-1 and OCT-2. A dramatic improvement in survival was seen after the recent introduction of the anti-CD20 monoclonal antibody. The association of this antibody to the cyclophosphamide, hydroxydaunorubicin, oncovin and prednisolone (CHOP) regimen has increased overall survival of diffuse large B-Cell lymphoma and follicular lymphoma patients by 20%. However, 50% of all diffuse large B-Cell lymphoma patients remain incurable, creating a demand for more research with new advances in treatment. Thus, it is important to know and understand the key factors and molecular pathways involved in the pathogenesis of diffuse large B-Cell lymphoma.
Resumo:
Se han eliminado páginas en blanco por lo que la paginación puede variar con respecto al índice
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.
Resumo:
The 3-UPU three degrees of freedom fully parallel manipulator, where U and P are for universal and prismatic pair respectively, is a very well known manipulator that can provide the platform with three degrees of freedom of pure translation, pure rotation or mixed translation and rotation with respect to the base, according to the relative directions of the revolute pair axes (each universal pair comprises two revolute pairs with intersecting and perpendicular axes). In particular, pure translational parallel 3-UPU manipulators (3-UPU TPMs) received great attention. Many studies have been reported in the literature on singularities, workspace, and joint clearance influence on the platform accuracy of this manipulator. However, much work has still to be done to reveal all the features this topology can offer to the designer when different architecture, i.e. different geometry are considered. Therefore, this dissertation will focus on this type of the 3-UPU manipulators. The first part of the dissertation presents six new architectures of the 3-UPU TPMs which offer interesting features to the designer. In the second part, a procedure is presented which is based on some indexes, in order to allows the designer to select the best architecture of the 3-UPU TPMs for a given task. Four indexes are proposed as stiffness, clearance, singularity and size of the manipulator in order to apply the procedure.
Resumo:
The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis have been of great importance in preventing potentially fatal infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce specific antibody response characterized by IgM immunoglobulins, with a very low IgG class switched response and lack of capability of inducing a booster response. The inability of pure polysaccharides to induce sustained immune responses has required the development of vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the target population, adjuvant used. The present study analyzes the memory B cell (MBC) response to the polysaccharide and to the carrier protein following vaccination with a glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much is known about the role of adjuvants in the development of immunological memory raised against GBS polysaccharides, as well as about the influence of having a pre-existing immunity against the carrier protein on the B cell response raised against the polysaccharide component of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody and memory B cell response to the carrier protein and to the conjugated polysaccharide. We also demonstrate that a pre-existing immunity to the carrier protein favors the development of the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, even in absence of adjuvants. These data provide a useful insight for a better understanding of the mechanism of action of this class of vaccines and for designing the best vaccine that could result in a productive and long lasting memory response.