932 resultados para GROWTH-FACTOR EXPRESSION
Resumo:
Adipose tissue forms when basement membrane extract ( Matrigel (TM)) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 mu L collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Expansion of the capillary network, or angiogenesis, occurs following endurance training. This process, which is reliant on the presence of VEGF (vascular endothelial growth factor), is an adaptation to a chronic mismatch between oxygen demand and supply. Patients with IC (intermittent claudication) experience pain during exercise associated with an inadequate oxygen delivery to the muscles. Therefore the aims of the present study were to examine the plasma VEGF response to acute exercise, and to establish whether exercise training alters this response in patients with IC. In Part A, blood was collected from patients with IC (n = 18) before and after (+ 20 and + 60 min post-exercise) a maximal walking test to determine the plasma VEGF response to acute exercise. VEGF was present in the plasma of patients (45.11 +/- 29.96 pg/ml) and was unchanged in response to acute exercise. Part B was a training study to determine whether exercise training altered the VEGF response to acute exercise. Patients were randomly assigned to a treatment group (TMT; n = 7) that completed 6 weeks of high-intensity treadmill training, or to a control group (CON; n = 6). All patients completed a maximal walking test before and after the intervention, with blood samples drawn as for Part A. Training had no effect on plasma VEGF at rest or in response to acute exercise, despite a significant increase in maximal walking time in the TMT group (915 + 533 to 1206 + 500 s; P = 0.009) following the intervention. The absence of a change in plasma VEGF may reflect altered VEGF binding at the endothelium, although this cannot be confirmed by the present data.
Resumo:
Proliferation of activated hepatic stellate cells (HSC) is an important event in the development of hepatic fibrosis. Insulin-like growth factor-1 (IGF-1) has been shown to be mitogenic for HSC, but the intracellular signaling pathways involved have not been fully characterized. Thus, the aims of the current study were to examine the roles of the extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (P13-K) and p70-S6 kinase (p70-S6-K) signaling pathways in IGF-1- and platelet-derived growth factor (PDGF)-induced mitogenic signaling of HSC and to examine the potential crosstalk between these pathways. Both IGF-1 and PDGF increased ERK, P13-K and p70-S6-K activity. When evaluating potential crosstalk between these signaling pathways, we observed that P13-K is required for p70-S6-K activation by IGF-1 and PDGF, and is partially responsible for PDGF-induced ERK activation. PDGF and IGF-1 also increased the levels of cyclin D1 and phospho-glycogen synthase kinase-30. Coordinate activation of ERK, P13-K and p70-S6-K is important for perpetuating the activated state of HSC during fibrogenesis.
Resumo:
The Australian elapid snakes are amongst the most venomous snakes in the world, but much less is known about the overall venom composition in comparison to Asian and American snakes. We have used a combined approach of cDNA cloning and 2-DE with MS to identify nerve growth factor (NGF) in venoms of the Australian elapid snakes and demonstrate its neurite outgrowth activity While a single 730 nucleotide ORF, coding for a 243 amino acid precursor protein was detected in all snakes, use of 2-DE identified NGF proteins with considerable variation in molecular size within and between the different snakes. The variation in size can be explained at least in part by Winked glycosylation. it is possible that these modifications alter the stability, is necessary to activity and other characteristics of the snake NGFs. Further characterisation delineate the function of the individual NGF isoforms.
Zinc neurotoxicity is promoted by nerve growth factor but is prevented by leukaemia inhibitor factor
Resumo:
The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.
Resumo:
Several studies show that membrane transport mechanisms are regulated by signalling molecules. Recently, genome-wide screen analyses in C.elegans have enabled scientists to identify novel regulators in membrane trafficking and also signalling molecules which are found to couple with this machinery. Fibroblast growth factor (FGF) via binding to fibroblast growth factor receptor (FGFR) mediate signals which are essential in the development of an organism, patterning, cell migration and tissue homeostasis. Impaired FGFR-mediated signalling has been associated with various developmental, neoplastic, metabolic and neurological diseases and cancer. In this study, the potential role of FGFR-mediated signalling pathway as a regulator of membrane trafficking was investigated. The GFP-tagged yolk protein YP170-GFP trafficking was analysed in worms where 1) FGFR signalling cascade components were depleted by RNAi and 2) in mutant animals. From these results, it was found that the disruption of the genes egl-15 (FGFR), egl-17(FGF), let-756(FGF), sem-5, let-60, lin-45, mek-2, mpk-1 and plc-3 lead to abnormal localization of YP170-GFP, suggesting that signalling downstream of FGFR via activation of MAPK and PLC-γ pathway is regulating membrane transport. The route of trafficking was further investigated, to pinpoint which membrane step is regulated by worm FGFR, by analysing a number of GFP-tagged intracellular membrane markers in the intestine of Wild Type (WT) and FGFR mutant worms. FGFR mutant worms showed a significant difference in the localisation of several endosomal membrane markers, suggesting its regulatory role in early and recycling steps of endocytosis. Finally, the trafficking of transferrin in a mammalian NIH/3T3 cell line was investigated to identify the conservation of these membrane trafficking regulatory mechanisms between organisms. Results showed no significant changes in transferrin trafficking upon FGFR stimulation or inhibition.