973 resultados para GAMMA IRRADIATION
Resumo:
Dentin wall structural changes caused by 810-nm-diode laser irradiation can influence the sealing ability of endodontic sealers. The objective of this study was to evaluate the apical leakage of AH Plus and RealSeal resin-based sealers with and without prior diode laser irradiation. Fifty-two single-rooted mandibular premolars were prepared and divided into 4 groups, according to the endodontic sealer used and the use or non-use of laser irradiation. The protocol for laser irradiation was 2.5W, continuous wave in scanning mode, with 4 exposures per tooth. After sample preparation, apical leakage of 50% ammoniacal silver nitrate impregnation was analyzed. When the teeth were not exposed to irradiation, the Real Seal sealer achieved the highest scores, showing the least leakage, with significant differences at the 5% level (Kruskal-Wallis test, p = 0.0004), compared with AH Plus. When the teeth were exposed to the 810-nm-diode laser irradiation, the sealing ability of AH Plus sealer was improved (p = 0282). In the Real Seal groups, the intracanal laser irradiation did not interfere with the leakage index, showing similar results in the GRS and GRSd groups (p = 0.1009).
Resumo:
The success of endodontic treatment depends on the complete elimination of microorganisms from the root canal system, thus the search for new procedures to eliminate them is justified. The aim of this study was to assess bacterial reduction after intracanal irradiation with the Er:YAG laser. The canals of 70 extracted human maxillary canines were prepared up to file #40 using 1% NaOCl, irrigated with 17% EDTA, and then washed with physiological solution activated by ultrasound. The roots were sterilized by autoclaving, inoculated with 10 mu l of a suspension containing 1.5 x 10(8) CFU/ml of Enterococcus faecalis ATCC 29212 and incubated at 37A degrees C for 72 h. The canals were irradiated with the Er:YAG laser using two energy settings: 60 mJ and 15 Hz, and 100 mJ and 10 Hz. The remaining bacteria were counted immediately and 48 h after laser irradiation. The results showed a high bacterial reduction at both time points. With 60 mJ and 15 Hz there was an immediate reduction of 99.73% and the reduction was 77.02% after 48 h, and with 100 mJ and 10 Hz there was an immediate reduction of 99.95% and the reduction was 84.52% after 48 h. Although the best results were observed with 100 mJ of energy, the difference between the two settings was not statistically significant. The count performed 48 h after irradiation showed that E. faecalis were able to survive, and can grow even from small numbers.
Resumo:
Objective: the purpose of the present study was to investigate the effects of ND:YLF laser irradiation (1.31 J/cm(2); 250 mJ per pulse), acid etching, and hypermineralization on the shear bond strength (SBS) of the Scotchbond Multi-Purpose Plus (3M Dental Products) bonding system. Summary Background Data: Previous studies had shown that the pretreatment of the dentin substrate with laser irradiation can influence the SBS, Methods: Sixty bovine incisors were selected and stored at -18 degrees C, Dentinal buccal surface was exposed and radiographs were taken to control dentin thickness, the specimens were separated into 2 groups: (1) the control, which was kept in distilled water at 4 degrees C; (2) the hypermineralized, which was kept in hypermineralizing solution at 4 degrees C for 14 days, Each group was divided into 3 subgroups according to the type of dentin pretreatment used: M (acid etching + primer + bond); AL (acid etching + primer + bond + laser); and LA (laser + acid etching + primer + bond). A standard composite resin cylinder (Z100-3M) was bonded to the dentinal surface and the SBS performed on an Instron machine (500 Kg load cell at 0.5 mm/min), followed by scanning electron microscopy (SEM) and x-ray diffraction analysis. Results: Analysis of variance (ANOVA) determined that the pretreatments influenced the SBS values (p < 0.05): AL (9.96 MPa), M (7.28 MPa), and LA (4.87 MPa), the interaction between the group and pretreatment factors also influenced the SBS (p < 0.05). The highest values were obtained for the interaction control/AL (11.64 MPa), Conclusion: the results suggested that dentin treatment with laser after the application of the adhesive system is efficient in achieving higher bond strength and is promising as a possible new adhesive substrate.
Resumo:
Background and Objectives. The adhesion of dental materials is important for the success of treatment. The aim of this study is to evaluate the bond strength of a composite resin applied with a self-etching adhesive system in different dentins after irradiation with Er:YAG and Nd:YAG lasers, observing their morphologic pattern using Scanning Electronic Microscopy (SEM). Materials and Methods. The buccal surface of 72 bovine incisors was worn until exposure of medium depth dentin. The specimens were divided into three groups; GI: normal, GII: demineralized and GIII: hypermineralized dentin. These were also divided into two subgroups; A-irradiated for 30 s with Er:YAG laser in noncontact mode at 40 mJ and 6 Hz and B- irradiated for 30 s with Nd:YAG laser in contact mode at 60 mJ and 10 Hz. The adhesive system Clearfil SE. Bond (Kuraray) and composite resin Tetric Ceram (Vivadent) were applied on the irradiated area by the incremental technique. After storage for 24 h in distilled water at 37 degrees C, the specimens were submitted to the shear strength test in a universal testing machine (EMIC) at a crosshead speed of 1.0 mm/min. Other specimens were made to be analyzed by SEM. Results. The results were statistically analyzed by Analysis of Variance and the Tukey test. Regardless of the type of dentin, the bond strength of specimens irradiated with the Nd:YAG laser (8,94 +/- 2,07) was higher compared to specimens irradiated with the Er:YAG laser (7,03 +/- 2,47); the highest bond strength was obtained for the group of hypermineralized dentin irradiated with the Nd:YAG laser. The SEM analysis showed that the Er:YAG laser caused opening of tubules and the Nd:YAG laser produced areas of fusion as well as regions of opening of dentinal tubules. Conclusions. The dentin showed different morphological patterns and the laser promote alterations on their surfaces, influencing the bond strength of the composite resin. (C) 2010 Laser Institute of America.
Resumo:
Different types of laser have been widely studied for applicability in the oral health area. In the endodontic area, investigations with some types of laser have been conducted to establish safe parameters for clinical application in root canals. However, it has not been duly explained whether the temperature increase caused by laser irradiation could cause alteration in the temperature on the external surface of the root and, consequently, alterations in the cells of the periodontal ligament, causing resorption and even loss of the dental element. The proposal in this paper was to gauge the external root temperature in the apical and cervical regions of the roots of human teeth during root canal irradiation with Nd:yttrium aluminum garnet (YAG) and Er:YAG lasers using different parameters. The novel approach of this paper is the use of the technique of laser applications along the total length of the root canal with series of repetitive irradiation, however, using time of 1 s of irradiation associated with 1 s off to avoid cumulative thermal effects. Experimental results confirm the accuracy of the parameters and exposure regimen obtained. All the parameters used in this paper are acceptable from a clinical as well as a biological point of view. (C) 2009 Laser Institute of America.
Resumo:
The muon transverse polarization in the K+-->mu(+)nugamma process induced by the electromagnetic final state interaction is calculated in the framework of the standard model. It is shown that one loop contributions lead to a nonvanishing muon transverse polarization. The value of the muon transverse polarization averaged over the kinematical region of E(gamma)greater than or equal to20 MeV is equal to 5.63x10(-4).
Resumo:
The behavior of the transition pion form factor for processes gamma (*)gamma --> pi(0) and gamma (*)gamma (*) --> pi(0) at large values of space-like photon momenta is estimated within the nonlocal covariant quark-pion model. It is shown that, in general, the coefficient of the leading asymptotic term depends dynamically on the ratio of the constituent quark mass and the average virtuality of quarks in the vacuum and kinematically on the ratio of photon virtualities. The kinematic dependence of the transition form factor allows us to obtain the relation between the pion light-cone distribution amplitude and the quark-pion vertex function. The dynamic dependence indicates that the transition form factor gamma (*)gamma -->, pi(0) at high momentum transfers is very sensitive to the nonlocality size of nonperturbative fluctuations in the QCD vacuum. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We present a measurement of the shape of the boson rapidity distribution for p (p) over bar -> Z/gamma(*)-> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV. The measurement is made for events with electron-positron mass 71 < M-ee < 111 GeV and uses 0.4 fb(-1) of data collected at the Fermilab Tevatron collider with the D0 detector. This measurement significantly reduces the uncertainties on the rapidity distribution in the forward region compared with previous measurements. Predictions of next-to-next-to-leading order (NNLO) QCD are found to agree well with the data over the full rapidity range.
Resumo:
We present a study of eey and mu mu gamma events using 1109 (1009) pb-(1) of data in the electron (muon) channel, respectively. These data were collected with the DO detector at the Fermilab Tevatron pp collider at Is = 1.96 TeV. Having observed 453 (515) candidates in the eey (jtAy) final state, we measure the Z gamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta Rey > 0.7, and invariant mass of the di-lepton pair Mee > 30 GeV/(2)(c), to be 4.96 0.30(stat. + syst.) zE 0.30(lumi.) pb, in agreement with the Standard Model prediction of 4.74 0.22 pb. This is the most precise Zy cross section measurement at a hadron collider. We set limits on anomalous trilinear Zyy and ZZy gauge boson couplings of -0.085 < h(30)(y) < 0.084, -0.0053 < h(40)(y) < 0.0054 and -0.083 < h(30)(Z) < 0.082, 30 40 30 -0.0053 < h(40)(Z) < 0.0054 at the 95% C.L. for the form-factor scale A = 1.2 TeV. 40 Published by Elsevier B.V.
Resumo:
We investigate the impact of new physics beyond the Standard Model to the s --> d gamma process, which is responsible for the short-distance contribution to the radiative decay Omega-( )--> Xi(-) gamma. We study three representative extensions of the Standard Model, namely a one-family technicolor model, a two Higgs doublet model and a model containing scalar leptoquarks. When constraints arising from the observed b --> s gamma transition and the upper limit on D-0-(D) over bar(0) mixing are taken into account, we find no significant contributions of new physics to the s --> d gamma process.
Resumo:
The WW gamma triple gauge boson coupling parameters are studied using p (p) over bar -> l nu gamma + X(l = e, mu) events at root s = 1.96 TeV. The data were collected with the D0 detector from an integrated luminosity of 162 pb(-1) delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p (p) over bar -> W(gamma) + X -> l nu gamma + X with E-T(gamma) > 8 GeV and Delta R-l gamma > 0.7 is 14.8 +/- 1.6(stat) +/- 1.0(syst) +/- 1.0(lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa(gamma) < 0.96 and -0.20 < lambda(gamma) < 0.20.
Resumo:
We present a measurement of the Z gamma production cross section and limits on anomalous ZZ gamma and Z gamma gamma couplings for form-factor scales of Lambda=750 and 1000 GeV. The measurement is based on 138 (152) candidates in the ee gamma (mu mu gamma) final state using 320(290) pb(-1) of p (p) over bar collisions at root s=1.96 TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are vertical bar h(10,30)(Z)vertical bar < 0.23, vertical bar h(20,40)(Z)vertical bar < 0.020, vertical bar h(10,30)(gamma)vertical bar < 0.23, and vertical bar h(20,40)(gamma)vertical bar < 0.019 for Lambda=1000 GeV.
Resumo:
We examine the gamma p photoproduction and the hadronic gamma gamma total cross sections by means of a QCD eikonal model with a dynamical infrared mass scale. In this model, where the dynamical gluon mass is the natural regulator for the tree level gluon-gluon scattering, the gamma p and gamma gamma total cross sections are derived from the pp and (p) over barp forward scattering amplitudes assuming vector meson dominance and the additive quark model. We show that the validity of the cross section factorization relation sigma(pp)/sigma(gamma p)=sigma(gamma p)/sigma(gamma gamma) is fulfilled depending on the Monte Carlo model used to unfold the hadronic gamma gamma cross section data, and we discuss in detail the case of sigma(gamma gamma -> hadrons) data with W-gamma gamma> 10 GeV unfolded by the Monte Carlo generators PYTHIA and PHOJET. The data seems to favor a mild dependence with the energy of the probability (P-had) that the photon interacts as a hadron.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)