927 resultados para Full-length Human


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The promoter from rice tungro bacilliform badnavirus (RTBV) is expressed only in phloem tissues in transgenic rice plants. RF2a, a b-Zip protein from rice, is known to bind to the Box II cis element near the TATA box of the promoter. Here, we report that the full-length RTBV promoter and a truncated fragment E of the promoter, comprising nucleotides −164 to +45, result in phloem-specific expression of β-glucuronidase (GUS) reporter genes in transgenic tobacco plants. When a fusion gene comprising the cauliflower mosaic virus 35S promoter and RF2a cDNA was coexpressed with the GUS reporter genes, GUS activity was increased by 2–20-fold. The increase in GUS activity was positively correlated with the amount of RF2a, and the expression pattern of the RTBV promoter was altered from phloem-specific to constitutive. Constitutive expression of RF2a did not induce morphological changes in the transgenic plants. In contrast, constitutive overexpression of the b-ZIP domain of RF2a had a strong effect on the development of transgenic plants. These studies suggest that expression of the b-Zip domain can interfere with the function of homologues of RF2a that regulate development of tobacco plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We isolated two tomato (Lycopersicon esculentum) cDNA clones, tomPRO1 and tomPRO2, specifying Δ1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of proline (Pro) biosynthesis. tomPRO1 is unusual because it resembles prokaryotic polycistronic operons (M.G. García-Ríos, T. Fujita, P.C. LaRosa, R.D. Locy, J.M. Clithero, R.A. Bressan, L.N. Csonka [1997] Proc Natl Acad Sci USA 94: 8249–8254), whereas tomPRO2 encodes a full-length P5CS. We analyzed the accumulation of Pro and the tomPRO1 and tomPRO2 messages in response to NaCl stress and developmental signals. Treatment with 200 mm NaCl resulted in a >60-fold increase in Pro levels in roots and leaves. However, there was a <3-fold increase in the accumulation of the tomPRO2 message and no detectable induction in the level of the tomPRO1 message in response to NaCl stress. Although pollen contained approximately 100-fold higher levels of Pro than other plant tissues, there was no detectable increase in the level of either message in pollen. We conclude that transcriptional regulation of these genes for P5CS is probably not important for the osmotic or pollen-specific regulation of Pro synthesis in tomato. Using restriction fragment-length polymorphism mapping, we determined the locations of tomPRO1 and tomPRO2 loci in the tomato nuclear genome. Sequence comparison suggested that tomPRO1 is similar to prokaryotic P5CS loci, whereas tomPRO2 is closely related to other eukaryotic P5CS genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear-encoded precursors of chloroplast proteins are synthesized with an amino-terminal cleavable transit sequence, which contains the information for chloroplastic targeting. To determine which regions of the transit sequence are most important for its function, the chloroplast uptake and processing of a full-length ferredoxin precursor and four mutants with deletions in adjacent regions of the transit sequence were analyzed. Arabidopsis was used as an experimental system for both in vitro and in vivo import. The full-length wild-type precursor translocated efficiently into isolated Arabidopsis chloroplasts, and upon expression in transgenic Arabidopsis plants only mature-sized protein was detected, which was localized inside the chloroplast. None of the deletion mutants was imported in vitro. By analyzing transgenic plants, more subtle effects on import were observed. The most N-terminal deletion resulted in a fully defective transit sequence. Two deletions in the middle region of the transit sequence allowed translocation into the chloroplast, although with reduced efficiencies. One deletion in this region strongly reduced mature protein accumulation in older plants. The most C-terminal deletion was translocated but resulted in defective processing. These results allow the dissection of the transit sequence into separate functional regions and give an in vivo basis for a domain-like structure of the ferredoxin transit sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbonic anhydrase (CA) (EC 4.2.1.1) enzymes catalyze the reversible hydration of CO2, a reaction that is important in many physiological processes. We have cloned and sequenced a full-length cDNA encoding an intracellular β-CA from the unicellular green alga Coccomyxa. Nucleotide sequence data show that the isolated cDNA contains an open reading frame encoding a polypeptide of 227 amino acids. The predicted polypeptide is similar to β-type CAs from Escherichia coli and higher plants, with an identity of 26% to 30%. The Coccomyxa cDNA was overexpressed in E. coli, and the enzyme was purified and biochemically characterized. The mature protein is a homotetramer with an estimated molecular mass of 100 kD. The CO2-hydration activity of the Coccomyxa enzyme is comparable with that of the pea homolog. However, the activity of Coccomyxa CA is largely insensitive to oxidative conditions, in contrast to similar enzymes from most higher plants. Fractionation studies further showed that Coccomyxa CA is extrachloroplastic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Function of the maize (Zea mays) gene sugary1 (su1) is required for normal starch biosynthesis in endosperm. Homozygous su1- mutant endosperms accumulate a highly branched polysaccharide, phytoglycogen, at the expense of the normal branched component of starch, amylopectin. These data suggest that both branched polysaccharides share a common precursor, and that the product of the su1 gene, designated SU1, participates in kernel starch biosynthesis. SU1 is similar in sequence to α-(1→6) glucan hydrolases (starch-debranching enzymes [DBEs]). Specific antibodies were produced and used to demonstrate that SU1 is a 79-kD protein that accumulates in endosperm coincident with the time of starch biosynthesis. Nearly full-length SU1 was expressed in Escherichia coli and purified to apparent homogeneity. Two biochemical assays confirmed that SU1 hydrolyzes α-(1→6) linkages in branched polysaccharides. Determination of the specific activity of SU1 toward various substrates enabled its classification as an isoamylase. Previous studies had shown, however, that su1- mutant endosperms are deficient in a different type of DBE, a pullulanase (or R enzyme). Immunoblot analyses revealed that both SU1 and a protein detected by antibodies specific for the rice (Oryza sativa) R enzyme are missing from su1- mutant kernels. These data support the hypothesis that DBEs are directly involved in starch biosynthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sorghum (Sorghum bicolor L. Moench) has two isozymes of the cyanogenic β-glucosidase dhurrinase: dhurrinase-1 (Dhr1) and dhurrinase-2 (Dhr2). A nearly full-length cDNA encoding dhurrinase was isolated from 4-d-old etiolated seedlings and sequenced. The cDNA has a 1695-nucleotide-long open reading frame, which codes for a 565-amino acid-long precursor and a 514-amino acid-long mature protein, respectively. Deduced amino acid sequence of the sorghum Dhr showed 70% identity with two maize (Zea mays) β-glucosidase isozymes. Southern-blot data suggested that β-glu-cosidase is encoded by a small multigene family in sorghum. Northern-blot data indicated that the mRNA corresponding to the cloned Dhr cDNA is present at high levels in the node and upper half of the mesocotyl in etiolated seedlings but at low levels in the root—only in the zone of elongation and the tip region. Light-grown seedling parts had lower levels of Dhr mRNA than those of etiolated seedlings. Immunoblot analysis performed using maize-anti-β-glucosidase sera detected two distinct dhurrinases (57 and 62 kD) in sorghum. The distribution of Dhr activity in different plant parts supports the mRNA and immunoreactive protein data, suggesting that the cloned cDNA corresponds to the Dhr1 (57 kD) isozyme and that the dhr1 gene shows organ-specific expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have identified maize (Zea mays L. inbred B73) mitochondrial homologs of the Escherichia coli molecular chaperones DnaK (HSP70) and GroEL (cpn60) using two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblots. During heat stress (42°C for 4 h), levels of HSP70 and cpn60 proteins did not change significantly. In contrast, levels of two 22-kD proteins increased dramatically (HSP22). Monoclonal antibodies were developed to maize HSP70, cpn60, and HSP22. The monoclonal antibodies were characterized with regard to their cross-reactivity to chloroplastic, cytosolic, and mitochondrial fractions, and to different plant species. Expression of mitochondrial HSP22 was evaluated with regard to induction temperature, time required for induction, and time required for degradation upon relief of stress. Maximal HSP22 expression occurred in etiolated seedling mitochondria after 5 h of a +13°C heat stress. Upon relief of heat stress, the HSP22 proteins disappeared with a half-life of about 4 h and were undetectable after 21 h of recovery. Under continuous heat-stress conditions, the level of HSP22 remained high. A cDNA for maize mitochondrial HSP22 was cloned and extended to full length with sequences from an expressed sequence tag database. Sequence analysis indicated that HSP22 is a member of the plant small heat-shock protein superfamily.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Higher plants express several isoforms of vacuolar and cell wall invertases (CWI), some of which are inactivated by inhibitory proteins at certain stages of plant development. We have purified an apoplasmic inhibitor (INH) of tobacco (Nicotiana tabacum) CWI to homogeneity. Based on sequences from tryptic fragments, we have isolated a full-length INH-encoding cDNA clone (Nt-inh1) via a reverse transcriptase-polymerase chain reaction. Southern-blot analysis revealed that INH is encoded by a single- or low-copy gene. Comparison with expressed sequence tag clones from Arabidopsis thaliana and Citrus unshiu indicated the presence of Nt-inh1-related proteins in other plants. The recombinant Nt-inh1-encoded protein inhibits CWI from tobacco and Chenopodium rubrum suspension-cultured cells and vacuolar invertase from tomato (Lycopersicon esculentum) fruit, whereas yeast invertase is not affected. However, only in the homologous system is the inhibition modulated by the concentration of Suc as previously shown for INH isolated from tobacco cells. Highly specific binding of INH to CWI could be shown by affinity chromatography of a total cell wall protein fraction on immobilized recombinant Nt-inh1 protein. RNA-blot analysis of relative transcript ratios for Nt-inh1 and CWI in different parts of adult tobacco plants revealed that the expression of both proteins is not always coordinate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional annotation of novel genes can be achieved by detection of interactions of their encoded proteins with known proteins followed by assays to validate that the gene participates in a specific cellular function. We report an experimental strategy that allows for detection of protein interactions and functional assays with a single reporter system. Interactions among biochemical network component proteins are detected and probed with stimulators and inhibitors of the network. In addition, the cellular location of the interacting proteins is determined. We used this strategy to map a signal transduction network that controls initiation of translation in eukaryotes. We analyzed 35 different pairs of full-length proteins and identified 14 interactions, of which five have not been observed previously, suggesting that the organization of the pathway is more ramified and integrated than previously shown. Our results demonstrate the feasibility of using this strategy in efforts of genomewide functional annotation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bronze (bz) locus exhibits the highest rate of recombination of any gene in higher plants. To investigate the possible basis of this high rate of recombination, we have analyzed the physical organization of the region around the bz locus. Two adjacent bacterial artificial chromosome clones, comprising a 240-kb contig centered around the Bz-McC allele, were isolated, and 60 kb of contiguous DNA spanning the two bacterial artificial chromosome clones was sequenced. We find that the bz locus lies in an unusually gene-rich region of the maize genome. Ten genes, at least eight of which are shown to be transcribed, are contained in a 32-kb stretch of DNA that is uninterrupted by retrotransposons. We have isolated nearly full length cDNAs corresponding to the five proximal genes in the cluster. The average intertranscript distance between them is just 1 kb, revealing a surprisingly compact packaging of adjacent genes in this part of the genome. At least 11 small insertions, including several previously described miniature inverted repeat transposable elements, were detected in the introns and 3′ untranslated regions of genes and between genes. The gene-rich region is flanked at the proximal and distal ends by retrotransposon blocks. Thus, the maize genome appears to have scattered regions of high gene density similar to those found in other plants. The unusually high rate of intragenic recombination seen in bz may be related to the very high gene density of the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insertion of introns into cloned cDNA of two isolates of the plant potyvirus pea seedborne mosaic virus facilitated plasmid amplification in Escherichia coli. Multiple stop codons in the inserted introns interrupted the open reading frame of the virus cDNA, thereby terminating undesired translation of virus proteins in E. coli. Plasmids containing the full-length virus sequences, placed under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase termination signal, were stable and easy to amplify in E. coli if one or more introns were inserted into the virus sequence. These plasmids were infectious when inoculated mechanically onto Pisum sativum leaves. Examination of the cDNA-derived viruses confirmed that intron splicing of in vivo transcribed pre-mRNA had occurred as predicted, reestablishing the virus genome sequences. Symptom development and virus accumulation of the cDNA derived viruses and parental viruses were identical. It is proposed that intron insertion can be used to facilitate manipulation and amplification of cloned DNA fragments that are unstable in, or toxic to, E. coli. When transcribed in vivo in eukaryotic cells, the introns will be eliminated from the sequence and will not interfere with further analysis of protein expression or virus infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA vaccines expressing herpes simplex virus type 2 (HSV-2) full-length glycoprotein D (gD), or a truncated form of HSV-2 glycoprotein B (gB) were evaluated for protective efficacy in two experimental models of HSV-2 infection. Intramuscular (i.m.) injection of mice showed that each construction induced neutralizing serum antibodies and protected the mice from lethal HSV-2 infection. Dose-titration studies showed that low doses (< or = 1 microgram) of either DNA construction induced protective immunity, and that a single immunization with the gD construction was effective. The two DNAs were then tested in a low-dosage combination in guinea pigs. Immune sera from DNA-injected animals had antibodies to both gD and gB, and virus neutralizing activity. When challenged by vaginal infection with HSV-2, the DNA-immunized animals were significantly protected from primary genital disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The estrogen receptor (ER), a member of a large superfamily of nuclear hormone receptors, is a ligand-inducible transcription factor that regulates the expression of estrogen-responsive genes. The ER, in common with other members of this superfamily, contains two transcription activation functions (AFs)--one located in the amino-terminal region (AF-1) and the second located in the carboxyl-terminal region (AF-2). In most cell contexts, the synergistic activity of AF-1 and AF-2 is required for full estradiol (E2)-stimulated activity. We have previously shown that a ligand-dependent interaction between the two AF-containing regions of ER was promoted by E2 and the antiestrogen trans-hydroxytamoxifen (TOT). This interaction, however, was transcriptionally productive only in the presence of E2. To explore a possible role of steroid receptor coactivators in transcriptional synergism between AF-1 and AF-2, we expressed the amino terminal (AF-1-containing) and carboxyl-terminal (AF-2-containing) regions of ER as separate polypeptides in mammalian cells, along with the steroid receptor coactivator-1 protein (SRC-1). We demonstrate that SRC-1, which has been shown to significantly increase ER transcriptional activity, enhanced the interaction, mediated by either E2 or TOT, between the AF-1-containing and AF-2-containing regions of the ER. However, this enhanced interaction resulted in increased transcriptional effectiveness only with E2 and not with TOT, consistent with the effects of SRC-1 on the full-length receptor. Our results suggest that after ligand binding, SRC-1 may act, in part, as an adapter protein that promotes the integration of amino- and carboxyl-terminal receptor functions, allowing for full receptor activation. Potentially, SRC-1 may be capable of enhancing the transcriptional activity of related nuclear receptor superfamily members by facilitating the productive association of the two AF-containing regions in these receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The disulfide bonding pattern of the fourth and fifth epidermal growth factor (EGF)-like domains within the smallest active fragment of thrombomodulin have been determined. In previous work, this fragment was expressed and purified to homogeneity, and its cofactor activity, as measured by Kcat for thrombin activation of protein C, was the same as that for full-length thrombomodulin. CNBr cleavage at the single methionine in the connecting region between the domains and subsequent deglycosylation yielded the individual EGF-like domains. The disulfide bonds were mapped by partial reduction with tris(2-carboxyethyl)phosphine according to the method of Gray [Gray, W. R. (1993) Protein Sci. 2, 1732-1748], which provides unambiguous results. The disulfide bonding pattern of the fourth EGF-like domain was (1-3, 2-4, 5-6), which is the same as that found previously in EGF and in a synthetic version of the fourth EGF-like domain. Surprisingly, the disulfide bonding pattern of the fifth domain was (1-2, 3-4, 5-6), which is unlike that found in EGF or in any other EGF-like domain analyzed so far. This result is in line with an earlier observation that the (1-2, 3-4, 5-6) isomer bound to thrombin more tightly than the EGF-like (1-3, 2-4, 5-6) isomer. The observation that not all EGF-like domains have an EGF-like disulfide bonding pattern reveals an additional element of diversity in the structure of EGF-like domains.