910 resultados para Fronts of expansion
Resumo:
Elucidation of mechanisms that regulate hematopoietic stem cell self-renewal and differentiation would be facilitated by the identification of defined culture conditions that allow these cells to be amplified. We now demonstrate a significant net increase (3-fold, P < 0.001) in vitro of cells that are individually able to permanently and competitively reconstitute the lymphoid and myeloid systems of syngeneic recipient mice when Sca-1+lin− adult marrow cells are incubated for 10 days in serum-free medium with interleukin 11, flt3-ligand, and Steel factor. Moreover, the culture-derived repopulating cells continued to expand their numbers in the primary hosts at the same rate seen in recipients of noncultured stem cells. In the expansion cultures, long-term culture-initiating cells increased 7- ± 2-fold, myeloid colony-forming cells increased 140- ± 36-fold, and total nucleated cells increased 230- ± 62-fold. Twenty-seven of 100 cultures initiated with 15 Sca-1+lin− marrow cells were found to contain transplantable stem cells 10 days later. This frequency of positive cultures is the same as the frequency of transplantable stem cells in the original input suspension, suggesting that most had undergone at least one self-renewal division in vitro. No expansion of stem cells was seen when Sca-1+TER119− CD34+ day 14.5 fetal liver cells were cultured under the same conditions. These findings set the stage for further investigations of the mechanisms by which cytokine stimulation may elicit different outcomes in mitotically activated hematopoietic stem cells during ontogeny and in the adult.
Resumo:
Understanding the structural organization of the genome is particularly relevant in segmented double-stranded RNA viruses, which exhibit endogenous transcription activity. These viruses are molecular machines capable of repeated cycles of transcription within the intact capsid. Rotavirus, a major cause of infantile gastroenteritis, is a prototypical segmented double-stranded RNA virus. From our three-dimensional structural analyses of rotavirus examined under various chemical conditions using electron cryomicroscopy, we show here that the viral genome exhibits a remarkable conformational flexibility by reversibly changing its packaging density. In the presence of ammonium ions at high pH, the genome condenses to a radius of ≈180 Å from ≈220 Å. Upon returning to physiological conditions, the genome re-expands and fully maintains its transcriptional properties. These studies provide further insights into the genome organization and suggest that the observed isometric and concentric nature of the condensation is due to strong interactions between the genome core and the transcription enzymes anchored to the capsid inner surface. The ability of the genome to condense beyond what is normally observed in the native virus indicates that the negative charges on the RNA in the native state may be only partially neutralized. Partial neutralization may be required to maintain appropriate interstrand spacing for templates to move around the enzyme complexes during transcription. Genome condensation was not observed either with increased cation concentrations at normal pH or at high pH without ammonium ions. This finding indicates that the observed genome condensation is a synergistic effect of hydroxyl and ammonium ions involving disruption of protein–RNA interactions that perhaps facilitate further charge neutralization and consequent reduction in the interstrand spacing.
Resumo:
Long-distance population dispersal leaves its characteristic signature in genomes, namely, reduced diversity and increased linkage between genetic markers. This signature enables historical patterns of range expansion to be traced. Herein, we use microsatellite loci from the human pathogen Coccidioides immitis to show that genetic diversity in this fungus is geographically partitioned throughout North America. In contrast, analyses of South American C. immitis show that this population is genetically depauperate and was founded from a single North American population centered in Texas. Variances of allele distributions show that South American C. immitis have undergone rapid population growth, consistent with an epidemic increase in postcolonization population size. Herein, we estimate the introduction into South America to have occurred within the last 9,000–140,000 years. This range increase parallels that of Homo sapiens. Because of known associations between Amerindians and this fungus, we suggest that the colonization of South America by C. immitis represents a relatively recent and rapid codispersal of a host and its pathogen.
Resumo:
The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems.
Resumo:
Cotton (Gossypium hirsutum L.) fibers are single-celled trichomes that synchronously undergo a phase of rapid cell expansion, then a phase including secondary cell wall deposition, and finally maturation. To determine if there is coordinated regulation of gene expression during fiber expansion, we analyzed the expression of components involved in turgor regulation and a cytoskeletal protein by measuring levels of mRNA and protein accumulation and enzyme activity. Fragments of the genes for the plasma membrane proton-translocating ATPase, vacuole-ATPase, proton-translocating pyrophosphatase (PPase), phosphoenolpyruvate carboxylase, major intrinsic protein, and α-tubulin were amplified by polymerase chain reaction and used as probes in ribonuclease protection assays of RNA from a fiber developmental series, revealing two discrete patterns of mRNA accumulation. Transcripts of all but the PPase accumulated to highest levels during the period of peak expansion (+12–15 d postanthesis [dpa]), then declined with the onset of secondary cell wall synthesis. The PPase was constitutively expressed through fiber development. Activity of the two proton-translocating-ATPases peaked at +15 dpa, whereas PPase activity peaked at +20 dpa, suggesting that all are involved in the process of cell expansion but with varying roles. Patterns of protein accumulation and enzyme activity for some of the proteins examined suggest posttranslational regulation through fiber development.
Resumo:
We have used a PCR-based technology to study the V beta 5 and V beta 17 repertoire of T-cell populations in HLA-DR2 multiple sclerosis (MS) patients. We have found that the five MS DR2 patients studied present, at the moment of diagnosis and prior to any treatment, a marked expansion of a CD4+ T-cell population bearing V beta 5-J beta 1.4 beta chains. The sequences of the complementarity-determining region 3 of the expanded T cells are highly homologous. One shares structural features with that of the T cells infiltrating the central nervous system and of myelin basic protein-reactive T cells found in HLA-DR2 MS patients. An homologous sequence was not detectable in MS patients expressing DR alleles other than DR2. However, it is detectable but not expanded in healthy DR2 individuals. The possible mechanisms leading to its in vivo proliferation at the onset of MS are discussed.
Resumo:
Disruption of guanylyl cyclase-A (GC-A) results in mice displaying an elevated blood pressure, which is not altered by high or low dietary salt. However, atrial natriuretic peptide (ANP), a proposed ligand for GC-A, has been suggested as critical for the maintenance of normal blood pressure during high salt intake. In this report, we show that infusion of ANP results in substantial natriuresis and diuresis in wild-type mice but fails to cause significant changes in sodium excretion or urine output in GC-A-deficient mice. ANP, therefore, appears to signal through GC-A in the kidney. Other natriuretic/diuretic factors could be released from the heart. Therefore, acute volume expansion was used as a means to cause release of granules from the atrium of the heart. That granule release occurred was confirmed by measurements of plasma ANP concentrations, which were markedly elevated in both wild-type and GC-A-null mice. After volume expansion, urine output as well as urinary sodium and cyclic GMP excretion increased rapidly and markedly in wild-type mice, but the rapid increases were abolished in GC-A-deficient animals. These results strongly suggest that natriuretic/diuretic factors released from the heart function exclusively through GC-A.
Resumo:
We describe a novel approach to assay the ability of particular gene products to signal transitions in lymphocyte differentiation in vivo. The method involves transfection of test expression constructs into RAG-1-deficient embryonic stem cells, which are subsequently assayed by the RAG-2-deficient blastocyst complementation approach. We have used this method to demonstrate that expression of activated Ras in CD4-8- (double negative, DN) prothymocytes in vivo induces their differentiation into small CD4+8+ (double positive, DP) cortical thymocytes with accompanying expansion to normal thymocyte numbers. However, activated Ras expression in DP cells does not cause proliferation or maturation to CD4+8- or CD4-8+ (single positive) thymocytes. Therefore, signaling through Ras is sufficient for promoting differentiation of DN to DP cells, but further differentiation requires the activity of additional signaling pathways.
Resumo:
Huntington's disease (HD) is an inherited neurodegenerative disorder associated with expansion of a CAG repeat in the IT15 gene. The IT15 gene is translated to a protein product termed huntingtin that contains a polyglutamine (polyGln) tract. Recent investigations indicate that the cause of HD is expansion of the polyGln tract. However, the function of huntingtin and how the expanded polyGln tract causes HD is not known. We investigate potential protein-protein interactions of huntingtin using affinity resins. Huntingtin from brain extracts is retained on calmodulin(CAM)-Sepharose in a calcium-dependent fashion. We purify rat huntingtin to apparent homogeneity using a combination of DEAE-cellulose column chromatography, ammonium sulfate precipitation, and preparative SDS/PAGE. Purified rat huntingtin does not interact with CAM directly as revealed by 125I-CAM overlay. Huntingtin forms a large CAM-containing complex of over 1,000 kDa in the presence of calcium, which partially disassociates in the absence of calcium. Furthermore, an increased amount of mutant huntingtin from HD patient brains is retained on CAM-Sepharose compared to normal huntingtin from control patient brains, and the mutant allele is preferentially retained on CAM-Sepharose in the absence of calcium. These results suggest that huntingtin interacts with other proteins including CAM and that the expansion of polyGln alters this interaction.
Resumo:
The conventional approach to cytotoxic T-lymphocyte (CTL) induction uses maximal antigen concentration with the intent of eliciting more CTL. However, the efficacy of this approach has not been systematically explored with regard to the quality of the CTLs elicited or their in vivo functionality. Here, we show that a diametrically opposite approach elicits CTLs that are much more effective at clearing virus. CTLs specific for a defined peptide epitope were selectively expanded with various concentrations of peptide antigen. CTLs generated with exceedingly low-dose peptide lysed targets sensitized with > 100-fold less peptide than CTLs generated with high-dose peptide. Differences in expression of T-cell antigen receptors or a number of other accessory molecules did not account for the functional differences. Further, high-avidity CTLs adoptively transferred into severe combined immunodeficient mice were 100- to 1000-fold more effective at viral clearance than the low-avidity CTLs, despite the fact that all CTL lines lysed virus-infected targets in vitro. Thus, the quality of CTLs is as important as the quantity of CTLs for adoptive immunotherapy, and the ability to kill virally infected targets in vitro is not predictive of in vivo efficacy, whereas the determinant density requirement described here is predictive. Application of these principles may be critical in developing effective adoptive cellular immunotherapy for viral infections and cancer.
Resumo:
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
Resumo:
Mouse 3T3-L1 cells differentiate into fat-laden adipocytes in response to a cocktail of adipogenic hormones. This conversion process occurs in two discrete steps. During an early clonal expansion phase, confluent 3T3-L1 cells proliferate and express the products of the beta and delta members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. The cells subsequently arrest mitotic growth, induce the expression of the alpha form of C/EBP, and acquire the morphology of fully differentiated adipocytes. Many of the genes induced during the terminal phase of adipocyte conversion are directly activated by C/EBP alpha, and gratuitous expression of this transcription factor is capable of catalyzing adipose conversion in a number of different cultured cell lines. The genetic program undertaken during the clonal expansion phase of 3T3-L1 differentiation, controlled in part by C/EBP beta and C/EBP delta, is less clearly understood. To study the molecular events occurring during clonal expansion, we have identified mRNAs that selectively accumulate during this phase of adipocyte conversion. One such mRNA encodes an immunophilin hereby designated FKBP51. In this report we provide the initial molecular characterization of FKBP51.
Resumo:
Differentiating 3T3-L1 cells express an immunophilin early during the adipocyte conversion program as described in this issue [Yeh, W.-C., Li, T.-K., Bierer, B. E. & McKnight, S. L. (1995) Proc. Natl. Acad. Sci. USA 92, 11081-11085]. The temporal expression profile of this protein, designated FK506-binding protein (FKBP) 51, is concordant with the clonal-expansion period undertaken by 3T3-L1 cells after exposure to adipogenic hormones. Having observed FKBP51 synthesis early during adipogenesis, we tested the effects of three immunosuppressive drugs--cyclosporin A, FK506, and rapamycin--on the terminal-differentiation process. Adipocyte conversion was not affected by either cyclosporin A or FK506 and yet was significantly reduced by rapamycin at drug concentrations as low as 10 nM. Clonal expansion was impeded in drug-treated cultures, as was the accumulation of cytoplasmic lipid droplets normally seen late during differentiation. Rapamycin treatment likewise inhibited the expression of CCAAT/enhancer binding protein alpha, a transcription factor required for 3T3-L1 cell differentiation. All three of these effects were reversed by high FK506 concentrations, indicating that the operative inhibitory event was mediated by an immunophilin-rapamycin complex.
Resumo:
B cells with a rearranged heavy-chain variable region VHa allotype-encoding VH1 gene segment predominate throughout the life of normal rabbits and appear to be the source of the majority of serum immunoglobulins, which thus bear VHa allotypes. The functional role(s) of these VH framework region (FR) allotypic structures has not been defined. We show here that B cells expressing surface immunoglobulin with VHa2 allotypic specificities are preferentially expanded and positively selected in the appendix of young rabbits. By flow cytometry, a higher proportion of a2+ B cells were progressing through the cell cycle (S/G2/M) compared to a2- B cells, most of which were in the G1/G0 phase of the cell cycle. The majority of appendix B cells in dark zones of germinal centers of normal 6-week-old rabbits were proliferating and very little apoptosis were observed. In contrast, in 6-week-old VH-mutant ali/ali rabbits, little cell proliferation and extensive apoptosis were observed. Nonetheless even in the absence of VH1, B cells with a2-like surface immunoglobulin had developed and expanded in the appendix of 11-week-old mutants. The numbers and tissue localization of B cells undergoing apoptosis then appeared similar to those found in 6-week-old normal appendix. Thus, B cells with immunoglobulin receptors lacking the VHa2 allotypic structures were less likely to undergo clonal expansion and maturation. These data suggest that "positive" selection of B lymphocytes through FR1 and FR3 VHa allotypic structures occurs during their development in the appendix.
Resumo:
In Canada, increases in rural development has led to a growing need to effectively manage the resulting municipal and city sewage without the addition of significant cost- and energy- expending infrastructure. Storring Septic Service Limited is a family-owned, licensed wastewater treatment facility located in eastern Ontario. It makes use of a passive waste stabilization pond system to treat and dispose of waste and wastewater in an environmentally responsible manner. Storring Septic, like many other similar small-scale wastewater treatment facilities across Canada, has the potential to act as a sustainable eco-engineered facility that municipalities and service providers could utilize to manage and dispose of their wastewater. However, it is of concern that the substantial inclusion of third party material could be detrimental to the stability and robustness of the pond system. In order to augment the capacity of the current facility, and ensure it remains a self-sustaining system with the capacity to safely accept septage from other sewage haulers, it was hypothesized that pond effluent treatment could be further enhanced through the incorporation of one of three different technology solutions, which would allow the reduction of wastewater quality parameters below existing regulatory effluent discharge limits put in place by Ontario’s Ministry of the Environment and Climate Change (MOECC). Two of these solutions make use of biofilm technologies in order to enhance the removal of wastewater parameters of interest, and the third utilizes the natural water filtration capabilities of zebra mussels. Pilot-scale testing investigated the effects of each of these technologies on treatment performance under both cold and warm weather operation. This research aimed to understand the important mechanisms behind biological filtration methods in order to choose and optimize the best treatment strategy for full-scale testing and implementation. In doing so, a recommendation matrix was elaborated provided with the potential to be used as a universal operational strategy for wastewater treatment facilities located in environments of similar climate and ecology.