974 resultados para Fractional-order dynamics
Resumo:
Two experiments evaluated the effects of the first GnRH injection of the 5-d timed artificial insemination (AI) program on ovarian responses and pregnancy per AT (P/AI), and the effect of timing of the final GnRH to induce ovulation relative to AT on P/AI. In experiment 1, 605 Holstein heifers were synchronized for their second insemination and assigned randomly to receive GnRH on study d 0 (n = 298) or to remain as untreated controls (n = 307). Ovaries were scanned on study d 0 and 5. All heifers received a controlled internal drug-release (CIDR) insert containing progesterone on d 0, a single injection of PGF(2 alpha),, and removal of the CIDR on d 5, and GnRH concurrent with timed AT on d 8. Blood was analyzed for progesterone at AI. Pregnancy was diagnosed on d 32 and 60 after AI. Ovulation on study d 0 was greater for GnRH than control (35.4 vs. 10.6%). Presence of a new corpus luteum (CL) at PGF(2 alpha),, injection was greater for GnRH than for control (43.1 vs. 20.8%), although the proportion of heifers with a CL at PGF(2 alpha) did not differ between treatments and averaged 87.1%. Progesterone on the day of AT was greater for GaRH than control (0.50 +/- 0.07 vs. 0.28 +/- 0.07 ng/mL). The proportion of heifers at AI with progesterone <0.5 ng/mL was less for GURH than for control (73.8 vs. 88.2%). The proportion of heifers in estrus at AI did not differ between treatments and averaged 66.8%. Pregnancy per AI was not affected by treatment at d 32 or 60 (GnRH = 52.5 and 49.8% vs. control = 54.1 and 50.0%), and pregnancy loss averaged 6.0%. Responses to GnRH were not influenced by ovarian status on study d 0. In experiment 2, 1,295 heifers were synchronized for their first insemination and assigned randomly to receive a CIDR on d 0, PGF(2 alpha) and removal of the CIDR on d 5, and either GnRH 56 h after PGF(2 alpha) and AI 16 h later (OVS56, n = 644) or GnRH concurrent with AI 72 h after PGF(2 alpha) (COS72; n = 651). Estrus at AI was greater for COS72 than for OVS56 (61.4 vs. 47.5). Treatment did not affect P/AI on d 32 in heifers displaying signs of estrus at AI, but COS72 improved P/AI compared with OVS56 (55.0 vs. 47.6%) in those not in estrus at AI. Similarly, P/AI on d 60 did not differ between treatments for heifers displaying estrus, but COS72 improved P/AI compared with OVS56 (53.0 vs. 44.7%) in those not in estrus at AI. Administration of GnRH on the first day of the 5-d timed AI program resulted in low ovulation rate and no improvement in P/AI when heifers received a single PGF(2 alpha) injection 5 d later. Moreover, extending the proestrus by delaying the finAI GnRH from 56 to 72 h concurrent with AI benefited fertility of dairy heifers that did not display signs of estrus at insemination following the 5-d timed AI protocol.
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate? extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required far viable management of such species in the Florida scrub ecosystem. (C) 2001 Academic Press.
Resumo:
A critical set in a latin square of order n is a set of entries in a latin square which can be embedded in precisely one latin square of order n. Also, if any element of the critical set is deleted, the remaining set can be embedded in more than one latin square of order n. In this paper we find smallest weak and smallest totally weak critical sets for all the latin squares of orders six and seven. Moreover, we computationally prove that there is no (totally) weak critical set in the back circulant latin square of order five and we find a totally weak critical set of size seven in the other main class of latin squares of order five.
Resumo:
Acetohydroxy acid isomeroreductase is a key enzyme involved in the biosynthetic pathway of the amino acids isoleucine, valine, and leucine. This enzyme is of great interest in agrochemical research because it is present only in plants and microorganisms, making it a potential target for specific herbicides and fungicides. Moreover, it catalyzes an unusual two-step reaction that is of great fundamental interest. With a view to characterizing both the mechanism of inhibition by potential herbicides and the complex reaction mechanism, various techniques of enzymology, molecular biology, mass spectrometry, X-ray crystallography, and theoretical simulation have been used. The results and conclusions of these studies are described briefly in this paper.
Resumo:
In this work, we present a systematic approach to the representation of modelling assumptions. Modelling assumptions form the fundamental basis for the mathematical description of a process system. These assumptions can be translated into either additional mathematical relationships or constraints between model variables, equations, balance volumes or parameters. In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The smallest indivisible syntactical element, the so called assumption atom has been identified as a triplet. With this syntax a modelling assumption can be described as an elementary assumption, i.e. an assumption consisting of only an assumption atom or a composite assumption consisting of a conjunction of elementary assumptions. The above syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and necessary conditions for checking them are given. These transformations can be used in several ways and their implications can be analysed by formal methods. The modelling assumptions define model hierarchies. That is, a series of model families each belonging to a particular equivalence class. These model equivalence classes can be related to primal assumptions regarding the definition of mass, energy and momentum balance volumes and to secondary and tiertinary assumptions regarding the presence or absence and the form of mechanisms within the system. Within equivalence classes, there are many model members, these being related to algebraic model transformations for the particular model. We show how these model hierarchies are driven by the underlying assumption structure and indicate some implications on system dynamics and complexity issues. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.
Resumo:
Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Goal-directed, coordinated movements in humans emerge from a variety of constraints that range from 'high-level' cognitive strategies based oil perception of the task to 'low-level' neuromuscular-skeletal factors such as differential contributions to coordination from flexor and extensor muscles. There has been a tendency in the literature to dichotomize these sources of constraint, favouring one or the other rather than recognizing and understanding their mutual interplay. In this experiment, subjects were required to coordinate rhythmic flexion and extension movements with an auditory metronome, the rate of which was systematically increased. When subjects started in extension on the beat of the metronome, there was a small tendency to switch to flexion at higher rates, but not vice versa. When subjects: were asked to contact a physical stop, the location of which was either coincident with or counterphase to the auditor) stimulus, two effects occurred. When haptic contact was coincident with sound, coordination was stabilized for both flexion and extension. When haptic contact was counterphase to the metronome, coordination was actually destabilized, with transitions occurring from both extension to flexion on the beat and from flexion to extension on the beat. These results reveal the complementary nature of strategic and neuromuscular factors in sensorimotor coordination. They also suggest the presence of a multimodal neural integration process-which is parametrizable by rate and context - in which intentional movement, touch and sound are bound into a single, coherent unit.
Resumo:
We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi-steady-slate rise in the mean water-table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed anti this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water-table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright (C) 2001 John Wiley & Sons, Ltd.