954 resultados para Fractional Advection-Dispersion Equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle, the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < \l\ < 2\n\, as in the local model. Numerical simulations show that nonlocality slightly decreases the threshold rotation frequency above which the nonvortex state ceases to be the global energy minimum and decreases the frequency of the anomalous mode of the 1-vortex. In the case of higher axial vortices, nonlocality leads to instability against splitting with the creation of antivortices and gives rise to additional anomalous modes with higher orbital numbers. Despite new instability channels with the creation of antivortices, for a stationary solution comprised of vortices and antivortices there always exists another vortex solution, composed solely of vortices, with the same total vorticity but with a lower energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Whitham modulation equations for the parameters of a periodic solution are derived using the generalized Lagrangian approach for the case of the damped Benjamin-Ono equation. The structure of the dispersive shock is considered in this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using variational and numerical solutions we show that stationary negative-energy localized (normalizable) bound states can appear in the three-dimensional nonlinear Schrodinger equation with a finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity, the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite norm at positive energies in the continuum. The normalizable negative-energy bound states could be created in BECs and studied in the laboratory with present knowhow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with a link between central extensions of N = 2 superconformal algebra and a supersymmetric two-component generalization of the Camassa-Holm equation. Deformations of superconformal algebra give rise to two compatible bracket structures. One of the bracket structures is derived from the central extension and admits a momentum operator which agrees with the Sobolev norm of a co-adjoint orbit element. The momentum operator induces, via Lenard relations, a chain of conserved Hamiltonians of the resulting supersymmetric Camassa-Holm hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooper pairing in two dimensions is analyzed with a set of renormalized equations to determine its binding energy for any fermion number density and all coupling assuming a,generic pairwise residual interfermion interaction. Also considered are Cooper pairs (CP's) with nonzero center-of-mass momentum (CMM) and their binding energy is expanded analytically in powers of the CMM up to quadratic terms. A Fermi-sea-dependent linear term in the CMM dominates the pair excitation energy in weak coupling (also called the BCS regime) while the more familiar quadratic term prevails in strong coupling (the Bose regime). The crossover, though strictly unrelated to BCS theory per se, is studied numerically as it is expected to play a central role in a model of superconductivity as a Bose-Einstein condensation of CPs where the transition temperature vanishes for all dimensionality d less than or equal to 2 for quadratic dispersion, but is nonzero for all d greater than or equal to 1 for linear dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a three-body calculation of direct muon-transfer rates from thermalized muonic hydrogen isotopes to bare nuclei Ne10+, S16+ and Ar18+ employing integro-differential Faddeev-Hahn-type equations in configuration space with a two-state close-coupling approximation scheme. All Coulomb potentials including the strong final-state Coulomb repulsion are treated exactly. A long-range polarization potential is included in the elastic channel to take into account the high polarizability of the muonic hydrogen. The transfer rates so-calculated are in good agreement with recent experiments. We find that the muon is captured predominantly in the n = 6, 9 and 10 states of muonic Ne10+, S16+ and Ar18+, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a relation between the Camassa-Holm equation and the non-local deformations of the sinh-Gordon equation is used to study some properties of the former equation. We will show that cuspon and soliton solutions can be obtained from soliton solutions of the deformed sinh-Gordon equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown how the complex sine-Gordon equation arises as a symmetry flow of the AKNS hierarchy. The AKNS hierarchy is extended by the 'negative' symmetry flows forming the Borel loop algebra. The complex sine-Gordon and the vector nonlinear Schrodinger equations appear as lowest-negative and second-positive flows within the extended hierarchy. This is fully analogous to the well known connection between the sine-Gordon and mKdV equations within the extended mKdV hierarchy. A general formalism for a Toda-like symmetry occupying the 'negative' sector of the sl(N) constrained KP hierarchy and giving rise to the negative Borel sl(N) loop algebra is indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooper pairing is studied in three dimensions to determine its binding energy for all coupling using a general separable interfermion interaction. Also considered are Cooper pairs (CPs) with nonzero center-of-mass momentum (CMM). A coupling-independent linear term in the CMM dominates the pair excitation energy in weak coupling and/or high fermion density, while the more familiar quadratic term prevails only in the extreme low-density (i.e., vacuum) limit for any nonzero coupling. The linear-to-quadratic crossover of the CP dispersion relation is analyzed numerically, and is expected to play a central role in a model of superconductivity (and superfluidity) simultaneously accommodating a Bardeen-Cooper-Schrieffer condensate as well as a Bose-Einstein condensate of CP bosons. (C) 2001 Elsevier B.V. B,V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter we investigate Lie symmetries of a (2 + 1)-dimensional integrable generalization of the Camassa-Holm (CH) equation. Through the similarity reductions we obtain four different (1 + 1)-dimensional systems of partial differential equations in which one of them turns out to be a (1 + 1)-dimensional CH equation. We establish their integrability by providing the Lax pair for all of them. Further, we present a brief analysis for some types of particular solutions which include the cuspon, peakon and soliton solutions for the two-dimensional generalization of the CH equation. (C) 2000 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of defects is discussed under the Lagrangian formalism and Backlund transformations for the N = 1 super sinh-Gordon model. Modified conserved momentum and energy are constructed for this case. Some explicit examples of different Backlund soliton solutions are discussed. The Lax formulation within the space split by the defect leads to the integrability of the model and henceforth to the existence of an infinite number of constants of motion.