957 resultados para Fox Indians.
Resumo:
1. Recent efforts to understand how the patterning of interaction strength affects both structure and dynamics in food webs have highlighted several obstacles to productive synthesis. Issues arise with respect to goals and driving questions, methods and approaches, and placing results in the context of broader ecological theory.
Resumo:
Background: High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent of non-genetic confounding, and are unmodified by disease processes, mendelian random isation can be used to test the hypothesis that the association of a plasma biomarker with disease is causal.
Methods: We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol.
Findings: Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher p=8×10-13) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with noncarriers. This difference in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84-0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88-1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58-0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93 95% CI 0·68-1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45-1·63) was concordant with that from genetic score (OR 2·13 95% CI 1·69-2·69, p=2×10 -10).
Interpretation: Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into reductions in risk of myocardial infarction.
Resumo:
1. Lough Neagh and Lough Beg Special Protection Area (SPA, hereafter Lough Neagh) is an important non-estuarine site in Britain and Ireland for overwintering wildfowl. Multivariate analysis of the winter counts showed a state-shift in the waterbird community following winter 2000/2001, mostly due to rapid declines in abundance (46–57% declines in the mean mid-winter January counts between 1993–2000 and 2002–2009) of members of the diving duck guild (pochard Aythya ferina, tufted duck Aythya fuligula and goldeneye Bucephala clangula) and coot (Fulica atra), a submerged macrophyte feeder.
2. Only pochard showed correlations between declines at Lough Neagh and those of overall species flyway population indices to suggest that global changes could contribute to declines at the site. However, indices from the Republic of Ireland showed no overall decline in the rest of Ireland. Tufted duck indices at the site were inversely related to indices in Great Britain. Lough Neagh goldeneye indices were positively correlated with indices in the Republic of Ireland and Great Britain, suggesting that short-stopping could contribute to declines at the site. Coot declines at Lough Neagh did not correlate with trends elsewhere, suggesting local factors involved in the decline.
3. These analyses indicate that although there are potentially different explanations for the dramatic declines in these four waterbird species at this site, the simultaneous nature of the declines across two feeding guilds strongly
suggest that local factors (such as loss of submerged macrophytes and benthic invertebrates) were involved. An assessment of the food supply, local disturbance and other factors at Lough Neagh is required to find an explanation for the observed adverse trends in wintering numbers of the affected species.
4. This study highlights the potential of waterbird community structure to reflect the status of aquatic systems, but confirms the need to establish site-specific factors responsible for the observed changes in abundance of key waterbird species at a site.
Resumo:
Chemoenzymatic dynamic kinetic resolution (DKR) of rac-1-phenyl ethanol into R-1-phenylethanol acetate was investigated with emphasis on the minimization of side reactions. The organometallic hydrogen transfer (racemization) catalyst was varied, and this was observed to alter the rate and extent of oxidation of the alcohol to form ketone side products. The performance of highly active catalyst [(pentamethylcyclopentadienyl) IrCl2(1-benzyl,3-methyl-imidazol-2-ylidene)] was found to depend on the batch of lipase B used. The interaction between the bio- and chemo-catalysts was reduced by employing physical entrapment of the enzyme in silica using a sol-gel process. The nature of the gelation method was found to be important, with an alkaline method preferred, as an acidic method was found to initiate a further side reaction, the acid catalyzed dehydration of the secondary alcohol. The acidic gel was found to be a heterogeneous solid acid.
Resumo:
Rare mutations in AßPP, PSEN1, and PSEN2 cause uncommon early onset forms of Alzheimer's disease (AD), and common variants in MAPT are associated with risk of other neurodegenerative disorders. We sought to establish whether common genetic variation in these genes confer risk to the common form of AD which occurs later in life (>65 years). We therefore tested single-nucleotide polymorphisms at these loci for association with late-onset AD (LOAD) in a large case-control sample consisting of 3,940 cases and 13,373 controls. Single-marker analysis did not identify any variants that reached genome-wide significance, a result which is supported by other recent genome-wide association studies. However, we did observe a significant association at the MAPT locus using a gene-wide approach (p = 0.009). We also observed suggestive association between AD and the marker rs9468, which defines the H1 haplotype, an extended haplotype that spans the MAPT gene and has previously been implicated in other neurodegenerative disorders including Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. In summary common variants at AßPP, PSEN1, and PSEN2 and MAPT are unlikely to make strong contributions to susceptibility for LOAD. However, the gene-wide effect observed at MAPT indicates a possible contribution to disease risk which requires further study.
Resumo:
The maintenance of biodiversity is a fundamental theme of the Marine Strategy Framework Directive. Appropriate indicators to monitor change in biodiversity, along with associated targets representing "good environmental status" (GES), are required to be in place by July 2012. A method for selecting species-specific metrics to fulfil various specified indicator roles is proposed for demersal fish communities. Available data frequently do not extend far enough back in time to allow GES to be defined empirically. In such situations, trends-based targets offer a pragmatic solution. A method is proposed for setting indicator-level targets for the number of species-specific metrics required to meet their trends-based metric-level targets. This is based on demonstrating significant departures from the binomial distribution. The procedure is trialled using North Sea demersal fish survey data. Although fisheries management in the North Sea has improved in recent decades, management goals to stop further decline in biodiversity, and to initiate recovery, are yet to be met.
Resumo:
Nitric oxide (NO) is important for the regulation of a number of diverse biological processes, including vascular tone, neurotransmission, inflammatory cell responsiveness, defence against invading pathogens and wound healing. Transition metal exchanged zeolites are nanoporous materials with high-capacity storage properties for gases such as NO. The NO stores are liberated upon contact with aqueous environments, thereby making them ideal candidates for use in biological and clinical settings. Here, we demonstrate the NO release capacity and powerful bactericidal properties of a novel NO-storing Zn2+-exchanged zeolite material at a 50 wt.% composition in a polytetrafluoroethylene polymer. Further to our published data showing the anti-thrombotic effects of a similar NO-loaded zeolite, this study demonstrates the antibacterial properties of NO-releasing zeolites against clinically relevant strains of bacteria, namely Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Clostridium difficile. Thus our study highlights the potential of NO-loaded zeolites as biocompatible medical device coatings with anti-infective properties. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Transition metal-exchanged zeolite-A adsorbs and stores nitric oxide in relatively high capacity (up to 1 mmol of NO/g of zeolite). The stored NO is released on contact with an aqueous environment under biologically relevant conditions of temperature and pH. The release of the NO can be tuned by altering the chemical composition of the zeolite, by controlling the amount of water contacting the zeolite, and by blending the zeolite with different polymers. The high capacity of zeolite for NO makes it extremely attractive for use in biological and medical applications, and our experiments indicate that the NO released from Co-exchanged zeolite-A inhibits platelet aggregation and adhesion of human platelets in vitro.
Resumo:
Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H-2 per g of HKUST-1 (22.7 mg g(-1), 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-1), 3.6 wt %) at 10 bar. Adsorption of D-2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at < 100 mbar) times the H-2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of similar to 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.
Resumo:
Many reactions involving phosphorus reagents require highly anhydrous and inert conditions for their successful implementation. In particular, the use of PCl3 and its derivatives for synthesis is often hampered by the inherent sensitivity of the materials themselves. Ionic liquids are emerging as green alternative solvents for a range of processes, and in particular have proven to be excellent media for highly sensitive phosphorus reagents without the need for anhydrous or inert conditions. Herein, we report the use of ionic liquids as both storage and reaction media which allows difficult and sensitive chemistry to be achieved in a more accessible manner.
Resumo:
The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.
Resumo:
The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.