956 resultados para Found footage films
Resumo:
The parasitoid of solenopsis mealybug, namely Aenasius bambawalei, has been recorded for the first time in Emerald, Queensland, Australia. The parasitoid was found during a routine inspection of ratoons on the western side of Emerald on 27 November 2012. During a recent trip to Theodore, two casings of parasitized mealybugs (already hatched) were also found, one on pigweed [ Amaranthus] and one in the field on a cotton plant.
Resumo:
Thin films of various metal fluorides are suited for optical coatings from infrared (IR) to ultraviolet (UV) range due to their excellent light transmission. In this work, novel metal fluoride processes have been developed for atomic layer deposition (ALD), which is a gas phase thin film deposition method based on alternate saturative surface reactions. Surface controlled self-limiting film growth results in conformal and uniform films. Other strengths of ALD are precise film thickness control, repeatability and dense and pinhole free films. All these make the ALD technique an ideal choice also for depositing metal fluoride thin films. Metal fluoride ALD processes have been largely missing, which is mostly due to a lack of a good fluorine precursor. In this thesis, TiF4 precursor was used for the first time as the fluorine source in ALD for depositing CaF2, MgF2, LaF3 and YF3 thin films. TaF5 was studied as an alternative novel fluorine precursor only for MgF2 thin films. Metal-thd (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) compounds were applied as the metal precursors. The films were grown at 175 450 °C and they were characterized by various methods. The metal fluoride films grown at higher temperatures had generally lower impurity contents with higher UV light transmittances, but increased roughness caused more scattering losses. The highest transmittances and low refractive indices below 1.4 (at 580 nm) were obtained with MgF2 samples. MgF2 grown from TaF5 precursor showed even better UV light transmittance than MgF2 grown from TiF4. Thus, TaF5 can be considered as a high quality fluorine precursor for depositing metal fluoride thin films. Finally, MgF2 films were applied in fabrication of high reflecting mirrors together with Ta2O5 films for visible region and with LaF3 films for UV region. Another part of the thesis consists of applying already existing ALD processes for novel optical devices. In addition to the high reflecting mirrors, a thin ALD Al2O3 film on top of a silver coating was proven to protect the silver mirror coating from tarnishing. Iridium grid filter prototype for rejecting IR light and Ir-coated micro channel plates for focusing x-rays were successfully fabricated. Finally, Ir-coated Fresnel zone plates were shown to provide the best spatial resolution up to date in scanning x-ray microscopy.
Resumo:
Photocatalytic TiO2 thin films can be highly useful in many environments and applications. They can be used as self-cleaning coatings on top of glass, tiles and steel to reduce the amount of fouling on these surfaces. Photocatalytic TiO2 surfaces have antimicrobial properties making them potentially useful in hospitals, bathrooms and many other places where microbes may cause problems. TiO2 photocatalysts can also be used to clean contaminated water and air. Photocatalytic oxidation and reduction reactions proceed on TiO2 surfaces under irradiation of UV light meaning that sunlight and even normal indoor lighting can be utilized. In order to improve the photocatalytic properties of TiO2 materials even further, various modification methods have been explored. Doping with elements such as nitrogen, sulfur and fluorine, and preparation of different kinds of composites are typical approaches that have been employed. Photocatalytic TiO2 nanotubes and other nanostructures are gaining interest as well. Atomic Layer Deposition (ALD) is a chemical gas phase thin film deposition method with strong roots in Finland. This unique modification of the common Chemical Vapor Deposition (CVD) method is based on alternate supply of precursor vapors to the substrate which forces the film growth reactions to proceed only on the surface in a highly controlled manner. ALD gives easy and accurate film thickness control, excellent large area uniformity and unparalleled conformality on complex shaped substrates. These characteristics have recently led to several breakthroughs in microelectronics, nanotechnology and many other areas. In this work, the utilization of ALD to prepare photocatalytic TiO2 thin films was studied in detail. Undoped as well as nitrogen, sulfur and fluorine doped TiO2 thin films were prepared and thoroughly characterized. ALD prepared undoped TiO2 films were shown to exhibit good photocatalytic activities. Of the studied dopants, sulfur and fluorine were identified as much better choices than nitrogen. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on various complex shaped substrates by exploiting the good qualities of ALD. A clear enhancement in the photocatalytic activity was achieved with these nanostructures. Several new ALD processes were also developed in this work. TiO2 processes based on two new titanium precursors, Ti(OMe)4 and TiF4, were shown to exhibit saturative ALD-type of growth when water was used as the other precursor. In addition, TiS2 thin films were prepared for the first time by ALD using TiCl4 and H2S as precursors. Ti1-xNbxOy and Ti1-xTaxOy transparent conducting oxide films were prepared successfully by ALD and post-deposition annealing. Highly unusual, explosive crystallization behaviour occurred in these mixed oxides which resulted in anatase crystals with lateral dimensions over 1000 times the film thickness.
Resumo:
The Rabinovitz/Rabb family arrived in Boston from Russia in the 1890s. Around 1914 they founded Economy Grocery Stores, which became Stop & Shop in 1946. In addition to building their grocery company into a successful business, the family is known for its philanthropy and active involvement in the Jewish community. The collection contains materials relating to the Rabb family and to the business operations of Stop & Shop until 1989. The materials in this collection include historical sketches, newspaper clippings, press releases, correspondence, memoranda, minutes, reports, advertisements, certificates, speeches, interviews, films, and photographs.
Resumo:
Feature films remain critical flagships to any national film industry. Australian feature films can be highly commercial endeavours that also perform symbolic functions by embodying the national imaginary in big screen based sound and imagery. They conduct a dialogue with domestic audiences as well as showcase key aspects of Australia in the global film festival circuit. As the pre-eminent filmmaking form, feature films also serve as important launchpads for the careers of many Australian writers, directors, actors and technical crew. In the wake of over a decade of diminished share of local box office obtained by Australian feature films, Australian Feature Films and Distribution: Industry or cottage industry, examines issues in the production sector affecting the performance of Australian feature films and some responses by the central funding and support screen agency, Screen Australia.
Resumo:
The present study is to investigate the interaction of strong shock heated oxygen on the surface of SiO2 thin film. The thermally excited oxygen undergoes a three-body recombination reaction on the surface of silicon dioxide film. The different oxidation states of silicon species on the surface of the shock-exposed SiO2 film are discussed based on X-ray Photoelectron Spectroscopy (XPS) results. The surface morphology of the shock wave induced damage at the cross section of SiO2 film and structure modification of these materials are analyzed using scanning electron microscopy and ion microscopy. Whether the surface reaction of oxygen on SiO2 film is catalytic or non-catalytic is discussed in this paper.
Resumo:
The interfacial shear rheological properties of a continuous single-crystalline film of CuS and a 3D particulate gel of CdS nanoparticles (3−5 nm in diameter) formed at toluene−water interfaces have been studied. The ultrathin films (50 nm in thickness) are formed in situ in the shear cell through a reaction at the toluene−water interface between a metal−organic compound in the organic layer and an appropriate reagent for sulfidation in the aqueous layer. Linear viscoelastic spectra of the nanofilms reveal solid-like rheological behavior with the storage modulus higher than the loss modulus over the range of angular frequencies probed. Large strain amplitude sweep measurements on the CdS nanofilms formed at different reactant concentrations suggest that they form a weakly flocculated gel. Under steady shear, the films exhibit a yield stress, followed by a steady shear thinning at high shear rates. The viscoelastic and flow behavior of these films that are in common with those of many 3D “soft” materials like gels, foams, and concentrated colloidal suspensions can be described by the “soft” glassy rheology model.
Resumo:
A study undertaken in Hervey Bay, Queensland, investigated the potential of creating an indigenous agribusiness opportunity based on the cultivation of indigenous Australian vegetables and herbs. Included were warrigal greens (WG) (Tetragonia tetragonioides), a green leafy vegetable and the herb sea celery (SC) (Apium prostratum); both traditional foods of the indigenous population and highly desirable to chefs wishing to add a unique, indigenous flavour to modern dishes. Packaging is important for shelf life extension and minimisation of postharvest losses in horticultural products. The ability of two packaging films to extend WG and SC shelf life was investigated. These were Antimisted Biaxial Oriented Polypropylene packaging film (BOPP) without perforations and Antifog BOPP Film with microperforations. Weight loss, packaging headspace composition, colour changes, sensory differences and microbial loads of packed WG and SC leaves were monitored to determine the impact of film oxygen transmission rate (OTR) and film water vapour transmission (WVT) on stored product quality. WG and SC were harvested, sanitised, packed and stored at 4°C for 16 days. Results indicated that the OTR and WVT rates of the package film significantly (PKLEINERDAN0.05) influenced the package headspace and weight loss, but did not affect product colour, total bacteria, yeast and mould populations during storage. There was no significant difference (PGROTERDAN0.05) in aroma, appearance, texture and flavour for WG and SC during storage. It was therefore concluded that a shelf life of 16 days at 4°C, where acceptable sensory properties were retained, was achievable for WG and SC in both packaging films.
Resumo:
Digital image