991 resultados para Force sensors
Resumo:
Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force fieldbased simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.
Resumo:
This work deals with modelling and experimental verification of desalination theory (surface force pore flow) . The work has direct application in desalination of sea water.
Resumo:
In this report we give a summary of our work on the development of low-noise fiber-optic strain sensors. Three types of strain sensors were developed and were tested by attaching them to the bodies of acoustic guitars. The fibers are strained as the soundboards of the guitars vibrate. The resulting spectral shift of either a Fiber Bragg Grating or a fiber Fabry-Perot cavity is then used to record the sound of the instrument.
Resumo:
The effects of linear scaling of the atomic charges of a reference potential on the structure, dynamics, and energetics of the ionic liquid 1,3-dimethylimidazolium chloride are investigated. Diffusion coefficients that span over four orders of magnitude are observed between the original model and a scaled model in which the ionic charges are +/- 0.5 e. While the three-dimensional structure of the liquid is less affected, the partial radial distribution functions change markedly-with the positive result that for ionic charges of +/- 0.7 e, an excellent agreement is observed with ab initio molecular dynamics data. Cohesive energy densities calculated from these partial-charge models are also in better agreement with those calculated from the ab initio data. We postulate that ionic-liquid models in which the ionic charges are assumed to be +/- 1 e overestimate the intermolecular attractions between ions, which results in overstructuring, slow dynamics, and increased cohesive energy densities. The use of scaled-charge sets may be of benefit in the simulation of these systems-especially when looking at properties beyond liquid structure-thus providing on alternative to computationally expensive polarisable force fields.
Resumo:
Background. Older adults typically exhibit dramatic reductions in the rate of force development and deficits in the execution of rapid coordinated movements. The purpose of the current study was to investigate the association between the reduced rate of force development exhibited by older adults and the ability to coordinate groups of muscles.
Resumo:
In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P<0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.
Resumo:
The purpose of this study was to examine the capacity of resistance training to enhance the rapid and coordinated production of force by older people. Thirty adults (greater than or equal to 60 years) completed a visually guided aiming task that required the generation of isometric torque in 2 df about the elbow prior to and following a 4-week training period. Groups of six participants were allocated to two progressive ( 40 - 100% maximal voluntary contraction (MVC)) resistance-training (PRT) groups, to two constant low-load (10% MVC) training groups (CLO) and to one no-training control group. Training movements required the generation of either combined flexion and supination (FLESUP), or combined extension and supination (EXTSUP). In response to training, target acquisition times in the aiming task decreased for all groups; however, both the nature of the training load and the training movement influenced the pattern and magnitude of improvements (EXTSUP_ CLO: 36%, FLESUP_ PRT 26%, EXTSUP_ PRT 22%, FLESUP_ CLO 20%, CONTROL 15%). For one group that trained with progressively increasing loads, there arose a subsequent decrease in performance in one condition of the transfer task. For each group, these adaptations were accompanied by systematic changes in the coordination of muscles about the elbow joint, particularly the biceps brachii.