999 resultados para Fluvial flux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates abundance variations in Noelaerhabdaceae assemblages during the late Oligocene-early Miocene at three subtropical sites in the Atlantic and Pacific oceans (DSDP Sites 516, 608 and 588). At these three sites, nannofossil assemblages were characterized by the successive high proportion of Cyclicargolithus, Dictyococcites and Reticulofenestra. Local paleoceanographic changes, such as the input of nutrient-poor water masses, might explain shifts in ecological prominence within the Noelaerhabdaceae at DSDP Site 516 (South Atlantic). But the similar timing of a decline in Cyclicargolithus at the three studied sites more likely corresponds to a global process. Here, we explore possible causes for this long-term taxonomic turnover. A global change in climate, associated with early Miocene glaciations, could have triggered a decline in fitness of the taxon Cyclicargolithus. The ecological niche made vacant because of the decrease in Cyclicargolithus could then have been exploited by Dictyococcites and Reticulofenestra that became prominent in the assemblages after 20.5 Ma. Alternatively, this global turnover might reflect a gradual evolutionary succession and be the result of other selection pressures, such as increased competition between Cyclicargolithus and Dictyococcites/Reticulofenestra. A diversification within Dictyococcites/Reticulofenestra, indicated by an expansion in the size variation within this group since ~ 20.5 Ma, may have contributed to the decreased fitness of Cyclicargolithus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five Ocean Drilling Program sites (657-661), which form a north-south transect off the western periphery of the Sahara, were selected to measure the long-term history of Saharan/Sahelian dust flux and fluvial sediment discharge and the fluxes of marine CaCO3 and opal over the last 8 m.y. Sites 658 and 659 served for high-resolution studies, and Sites 657, 660, and 661 for insights into the spatial patterns of dust flux. The nearshore mean flux of opal off Cap Blanc (21 °N) showed an abrupt increase about 3 Ma that appears to reflect the main onset of coastal upwelling fertility and enhanced trade winds. At the same time, the input of river-borne clay strongly decreased, suggesting a dry up of the central Saharan rivers. Later, marked short-lived spikes of clay and opal may indicate ongoing ephemeral pulses of fluvial runoff linked to peak interglacial stages. Given the zonal dust discharge centered near 18 °N at Site 659, the aridification of the south Sahara and Sahel increased in several steps: at 4.6, 4.3, and especially at 4.0, 3.6, and 2.1 Ma, and again, at 0.8 Ma. The late Miocene and earliest Pliocene were humid. Although the central and north Saharan climate appears to be linked to the glaciation history of the Northern Hemisphere, the long-term aridification further south followed a different schedule. The spatial distribution of quartz accumulation suggests that the dust outbreaks linked to the Intertropical Convergence Zone during summer did not shift in latitude back to 4.0 Ma, at least. The short-term variations of dust output over the last 0.5 m.y. followed orbital scale pulses with a strong precessional signal, showing a link of Sahelian humidity changes to the variation of sea-surface temperature and evaporation in the tropical Atlantic.