988 resultados para Fluorescence properties
Resumo:
Few tools are available to assist graziers, land administrators and financiers in making objective grazing capacity decisions on Australian rangelands, despite existing knowledge regarding stocking rate theory and the impact of stocking rates on land condition. To address this issue a model for objectively estimating 'safe' grazing capacities on individual grazing properties in south-west Queensland was developed. The method is based on 'safe' levels of utilisation (15%-20%) by domestic livestock of average annual forage grown for each land system on a property. Average annual forage grown (kglha) was calculated as the product of the rainfall use efficiency (kglhdmm) and average annual rainfall (mm) for a land system. This estimate included the impact of tree and shrub cover on forage production. The 'safe' levels of forage utilisation for south- west Queensland pastures were derived from the combined experience of (1) re-analysis of the results of grazing trials, (2) reaching a consensus on local knowledge and (3) examination of existing grazing practice on 'benchmark' grazing properties. We recognise the problems in defining, determining and using grazing capacity values, but consider that the model offers decision makers a tool that can be used to assess the grazing capacity of individual properties.
Resumo:
This study provides information about wood quality, structural properties, processing characterists and product suitability of wood harvested from fast-grown hardwood plantations. Wood quality attributes tested included density, extractive content, unit shrinkage, heartwood proportion and sapwood width. Structural properties tested included small clear and full section strength and stiffness, hardness, joint group, visual grade assessment and natural vibration-based grade assessment. The variation between the inner, intermediate and outer heartwood zones and the variation between provenances was also tested. Overall, the wood qualtiy attributes measured for 19 year-old E. cloeziana and 15 year-old E. pellita plantation material fall between those expected from the wood of mature, native forest trees and those found in younger plantation material of the same species.
Resumo:
7-Alkoxy and 4-methyl-7-alkoxy coumarins show solvent-dependent fluorescence emission. The monomeric fluorescence emission of these alkoxy coumarins was exploited as a probe to measure the surface polarity of the micelles formed by ionic (sodium dodecylsulphate and cetyltrimethyl-ammonium bromide) and non-ionic (Triton X-100) detergents. By comparing the solvent-dependent fluorescence of these alkoxy coumarins in various homogeneous solvents, the polarity of the micelles was determined qualitatively. All three micelles are more polar than hydrocarbon solvents but are less polar than water.
Resumo:
Recent work of Jones et al. giving the long-range behaviour of the pair correlation function is used to confirm that the critical ratio Pc/nckBTc = 1/2 in the Born-Green theory. This deviates from experimental results on simple insulating liquids by more than the predictions of the van der Waals equation of state. A brief discussion of conditions for thermodynamic consistency, which the Born-Green theory violates, is then given. Finally, the approach of the Ornstein-Zernike correlation function to its critical point behaviour is discussed within the Born-Green theory.
Resumo:
The preparation and properties of five new dyes derived from nickel(I1) ions and aromatic azo derivatives of ethylenebls(P-ketoesters) are reported.
Resumo:
An important challenge in forest industry is to get the appropriate raw material out from the forests to the wood processing industry. Growth and stem reconstruction simulators are therefore increasingly integrated in industrial conversion simulators, for linking the properties of wooden products to the three-dimensional structure of stems and their growing conditions. Static simulators predict the wood properties from stem dimensions at the end of a growth simulation period, whereas in dynamic approaches, the structural components, e.g. branches, are incremented along with the growth processes. The dynamic approach can be applied to stem reconstruction by predicting the three-dimensional stem structure from external tree variables (i.e. age, height) as a result of growth to the current state. In this study, a dynamic growth simulator, PipeQual, and a stem reconstruction simulator, RetroSTEM, are adapted to Norway spruce (Picea abies [L.] Karst.) to predict the three-dimensional structure of stems (tapers, branchiness, wood basic density) over time such that both simulators can be integrated in a sawing simulator. The parameterisation of the PipeQual and RetroSTEM simulators for Norway spruce relied on the theoretically based description of tree structure developing in the growth process and following certain conservative structural regularities while allowing for plasticity in the crown development. The crown expressed both regularity and plasticity in its development, as the vertical foliage density peaked regularly at about 5 m from the stem apex, varying below that with tree age and dominance position (Study I). Conservative stem structure was characterized in terms of (1) the pipe ratios between foliage mass and branch and stem cross-sectional areas at crown base, (2) the allometric relationship between foliage mass and crown length, (3) mean branch length relative to crown length and (4) form coefficients in branches and stem (Study II). The pipe ratio between branch and stem cross-sectional area at crown base, and mean branch length relative to the crown length may differ in trees before and after canopy closure, but the variation should be further analysed in stands of different ages and densities with varying site fertilities and climates. The predictions of the PipeQual and RetroSTEM simulators were evaluated by comparing the simulated values to measured ones (Study III, IV). Both simulators predicted stem taper and branch diameter at the individual tree level with a small bias. RetroSTEM predictions of wood density were accurate. For focusing on even more accurate predictions of stem diameters and branchiness along the stem, both simulators should be further improved by revising the following aspects in the simulators: the relationship between foliage and stem sapwood area in the upper stem, the error source in branch sizes, the crown base development and the height growth models in RetroSTEM. In Study V, the RetroSTEM simulator was integrated in the InnoSIM sawing simulator, and according to the pilot simulations, this turned out to be an efficient tool for readily producing stand scale information about stem sizes and structure when approximating the available assortments of wood products.
Resumo:
Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I10+ ions to fluences of 1 × 1010 and 1 × 1012 ions/cm2. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate's surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.
Resumo:
In the Mackay Whitsunday region, the dominant grazing based operations are small intensive systems that heavily utilise soil, nutrient and chemical management practices. To improve water quality entering the Great Barrier Reef, graziers are being encouraged to adopt improved management practices. However, while there is good understanding of the management changes required to reach improved practice classification levels, there is poor understanding of the likely economic implications for a grazier seeking to move from a lower level classification to the higher level classifications. This paper provides analysis of the costs and benefits associated with adoption of intensive grazing best management practices to determine the effect on the profitability and economic sustainability of grazing enterprises, and the economic viability of capital investment to achieve best management. The results indicate that financial incentives are likely to be required to encourage smaller graziers to invest in changing their management practices, while larger graziers may only require incentives to balance the risk involved with the transition to better management practices.
Resumo:
The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.
Resumo:
The effect of material properties of an environmentally friendly, optically transparent dielectric material, polyterpenol, on the carrier transients within the pentacene-based double-layer MTM device was investigated. Polyterpenol films were RF plasma polymerised under varied process conditions, with resultant films differing in surface chemistry and morphology. Independent of type of polyterpenol, time-resolved EFISHG study of IZO/polyterpenol/pentacene/Au structures showed similar transient behaviour with carriers injected into pentacene from Au electrode only, confirming polyterpenol to be a suitable blocking layer for visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Polyterpenol fabricated under higher input power show better promise due to higher chemical and thermal stability, improved uniformity, and absence of defects.
Resumo:
Organic plasma polymers are currently attracting significant interest for their potential in the areas of flexible optoelectronics and biotechnology. Thin films of plasma-polymerized polyterpenol fabricated under varied deposition conditions were studied using nanoindentation and nanoscratch analyses. Coatings fabricated at higher deposition power were characterized by improved hardness, from 0.33 GPa for 10 W to 0.51 GPa for 100 W at 500-μN load, and enhanced wear resistance. The elastic recovery was estimated to be between 0.1 and 0.14. Coatings deposited at higher RF powers also showed less mechanical deformation and improved quality of adhesion. The average (R a) and root mean square (R q) surface roughness parameters decreased, from 0.44 nm and 0.56 nm for 10 W to 0.33 nm and 0.42 nm for 100 W, respectively.
Resumo:
Plasma polymerisation was used to deposit thin oligomeric films of terpinen-4-ol on a range of substrates. The coatings were examined in terms of their chemical properties and surface architecture to ascertain the changes in chemical composition as a result of exposure to the plasma field. The antifouling and antimicrobial activity of oligomeric terpinen-4-ol coatings were then examined against such human pathogens as Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermis. The bacterial adhesion patterns were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM).
Resumo:
This study presents the effect of iodine doping on optical and surface properties of polyterpenol thin films deposited from non-synthetic precursor by means of plasma polymerisation. Spectroscopic ellipsometry studies showed iodine doping reduced the optical band gap from 2.82 eV to 1.50 eV for pristine and doped samples respectively. Higher levels of doping notably reduced the transparency of films, an issue if material is considered for applications that require high transparency. Contact angle studies demonstrated higher hydrophilicity for films deposited at increased doping levels, results confirmed by XPS Spectroscopy and FTIR. Doping had no significant effect on the surface profile or roughness of the film.
Resumo:
Characterisation of mass transfer properties was achieved in the longitudinal, radial, and tangential directions for four Australian hardwood species: spotted gum, blackbutt, jarrah and messmate. Measurement of mass transfer properties for these species was necessary to complement current vacuum drying modelling research. Water-vapour diffusivity was determined in steady state using a specific vapometer. Permeability values of some species and material directions were extremely low and undetectable by the mass flow meter device. Hence, a custom system based on volume evolution was conceived to determine very low, previously unpublished, wood permeability values. Mass diffusivity and permeability were lowest for spotted gum and highest for messmate. Except for messmate, in the radial direction, the four species measured were less permeable in all directions than the lowest published figures, demonstrating the high impermeability of Australian hardwoods and partly accounting for their relatively slow drying rates. Premeability, water-vapour diffusivity, and associated anisotropic ratio data obtained for messmate were extreme or did not follow typical trends and is consequently the most difficult of the four woods to dry in terms of collapse and checkinng degradation.
Resumo:
Wood quality and properties of plantation grown trees differ from those from mature, natural grown trees and this has implications for processing, manufacturing and product performance. The wood properties of genetically improved and syliculturally managed plantation trees are affected by their faster growth rates younger harvest age. This report summarises the key wood properties of species that are the primary candidates for plantation forestry in the subtropical to tropical region of eastern Australia. The planned end uses for these trees vary from short-rotation pulp to high-value products such as poles, sawn timber for appearance products and engineered wood products including structural plywood and laminated veneer lumber (LVL).