863 resultados para Flow and segregation behaviour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1,sc). We assessed Na+ and Cl-fractional excretion (FENa+ and FECl-, respectively) and renal and plasma catecholamine release concentrations. FENa+, FECl-, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+, FECl-, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master’s thesis investigates the significant macroeconomic and firm level determinants of CAPEX in Russian oil and mining sectors. It also studies the Russian oil and mining sectors, its development, characteristics and current situation. The panel data methodology was implemented to identify the determinants of CAPEX in Russian oil and mining sectors and to test derived hypotheses. The core sample consists of annual financial data of 45 publicly listed Russian oil and mining sector companies. The timeframe of the thesis research is a six year period from 2007 to 2013. The findings of the master’s thesis have shown that Gross Sales, Return On Assets, Free Cash Flow and Long Term Debt are firm level performance variables along with Russian GDP, Export, Urals and the Reserve Fund are macroeconomic variables that determine the magnitude of new capital expenditures reported by publicly listed Russian oil and mining sector companies. These results are not controversial to the previous research paper, indeed they confirm them. Furthermore, the findings from the emerging countries, such as Malaysia, India and Portugal, are analogous to Russia. The empirical research is edifying and novel. Findings from this master’s thesis are highly valuable for the scientific community, especially, for researchers who investigate the determinant of CAPEX in developing countries. Moreover, the results can be utilized as a cogent argument, when companies and investors are doing strategic decisions, considering the Russian oil and mining sectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis addresses the coolability of porous debris beds in the context of severe accident management of nuclear power reactors. In a hypothetical severe accident at a Nordic-type boiling water reactor, the lower drywell of the containment is flooded, for the purpose of cooling the core melt discharged from the reactor pressure vessel in a water pool. The melt is fragmented and solidified in the pool, ultimately forming a porous debris bed that generates decay heat. The properties of the bed determine the limiting value for the heat flux that can be removed from the debris to the surrounding water without the risk of re-melting. The coolability of porous debris beds has been investigated experimentally by measuring the dryout power in electrically heated test beds that have different geometries. The geometries represent the debris bed shapes that may form in an accident scenario. The focus is especially on heap-like, realistic geometries which facilitate the multi-dimensional infiltration (flooding) of coolant into the bed. Spherical and irregular particles have been used to simulate the debris. The experiments have been modeled using 2D and 3D simulation codes applicable to fluid flow and heat transfer in porous media. Based on the experimental and simulation results, an interpretation of the dryout behavior in complex debris bed geometries is presented, and the validity of the codes and models for dryout predictions is evaluated. According to the experimental and simulation results, the coolability of the debris bed depends on both the flooding mode and the height of the bed. In the experiments, it was found that multi-dimensional flooding increases the dryout heat flux and coolability in a heap-shaped debris bed by 47–58% compared to the dryout heat flux of a classical, top-flooded bed of the same height. However, heap-like beds are higher than flat, top-flooded beds, which results in the formation of larger steam flux at the top of the bed. This counteracts the effect of the multi-dimensional flooding. Based on the measured dryout heat fluxes, the maximum height of a heap-like bed can only be about 1.5 times the height of a top-flooded, cylindrical bed in order to preserve the direct benefit from the multi-dimensional flooding. In addition, studies were conducted to evaluate the hydrodynamically representative effective particle diameter, which is applied in simulation models to describe debris beds that consist of irregular particles with considerable size variation. The results suggest that the effective diameter is small, closest to the mean diameter based on the number or length of particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the morphology, anatomy and germination behaviour of Phoenix roebelenii seeds. Biometric data were obtained by measuring 100 seeds extracted from recently harvested fruits and air-dried for one day. Four replications of 50 seeds each were previously treated with Vitavax-Thiran and then put to germinate in Sphagnum sp. in plastic trays at room temperature. Morphological details of the seeds were documented with the help of a scanning electronic microscope and then drawings were made with the help of a clear camera coupled to a stereomicroscope. Permanent lamina containing embryo sections were prepared to study its anatomy. The mean dimensions of the seeds were: length of 10.32mm, width of 5.21mm and thickness of 3.91mm. The weight of one thousand seeds was of 151.1g and the mean number of units.kg-1 was 6,600. Germination started between 27 and 58 days after sowing. The seeds are of the albuminous type, the endosperm is hard and the embryo (which is not clearly differentiated) occupies a lateral and peripheral position. During seed germination, seedling protrusion begins with the opening of an operculum, through which the cotyledon petiole is emitted with the embryonic axis at its tip. The portion of the cotyledon petiole that remains inside the seeds acts as a haustorium for the absorption of nutrients from the endosperm. The plumule emerges through a rift in the posterior part of the cotyledon. Secondary roots are observed to grow from the anterior part of the primary root.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finnish design and consulting companies are delivering robust and cost-efficient steel structures solutions to a large number of manufacturing companies worldwide. Recently introduced EN 1090-2 standard obliges these companies to specify the execution class of steel structures for their customers. This however, requires clarifying, understanding and interpreting the sophisticated procedure of execution class assignment. The objective of this research is to provide a clear explanation and guidance through the process of execution class assignment for a given steel structure and to support the implementation of EN 1090-2 standard in Rejlers Oy, one of Finnish design and consulting companies. This objective is accomplished by creating a guideline for designers that elaborates on the four-step process of the execution class assignment for a steel structure or its part. Steps one to three define the consequence class (projected consequences of structure failure), the service category (hazards associated with the service use exploitation of steel structure) and the production category (manufacturing process peculiarities), based on the ductility class (capacity of structure to withstand deformations) and the behaviour factor (corresponds to structure seismic behaviour). The final step is the execution class assignment taking into account results of previous steps. Main research method is indepth literature review of European standards family for steel structures. Other research approach is a series of interviews of Rejlers Oy representatives and its clients, results of which have been used to evaluate the level of EN 1090-2 awareness. Rejlers Oy will use the developed novel coherent standard implementation guideline to improve its services and to obtain greater customer satisfaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the work is to study the flow behavior and to support the design of air cleaner by dynamic simulation.In a paper printing industry, it is necessary to monitor the quality of paper when the paper is being produced. During the production, the quality of the paper can be monitored by camera. Therefore, it is necessary to keep the camera lens clean as wood particles may fall from the paper and lie on the camera lens. In this work, the behavior of the air flow and effect of the airflow on the particles at different inlet angles are simulated. Geometries of a different inlet angles of single-channel and double-channel case were constructed using ANSYS CFD Software. All the simulations were performed in ANSYS Fluent. The simulation results of single-channel and double-channel case revealed significant differences in the behavior of the flow and the particle velocity. The main conclusion from this work are in following. 1) For the single channel case the best angle was 0 degree because in that case, the air flow can keep 60% of the particles away from the lens which would otherwise stay on lens. 2) For the double channel case, the best solution was found when the angle of the first inlet was 0 degree and the angle of second inlet was 45 degree . In that case, the airflow can keep 91% of particles away from the lens which would otherwise stay on lens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study is to understand why virtual knowledge workers conduct autonomous tasks and interdependent problem solving tasks on virtual platforms. The study is qualitative case study including three case organizations that tap the knowledge of expert networks, and utilize virtual platforms in the work processes. Research data includes 15 interviews, that is, five experts from each case company. According to the findings there are some specific characteristics in motivation to work on tasks on online platforms. Autonomy, self-improvement, meaningful tasks, knowledge sharing, time management, variety of contacts, and variety of tasks, and projects motivate virtual knowledge workers. Factors that may enhance individuals’ engagement to work on tasks are trust, security of continuous task flow and income, feedback, meaningful tasks and tasks that contribute to self-improvement, flexibility and effectiveness in time management, and virtual tools that support social interaction. The results also indicate that there are some differences in individuals’ motivation based on the tasks’ nature. That is, knowledge sharing and variety of contacts motivated experts who worked on interdependent problem solving tasks. Then again, autonomy and variety of tasks motivated experts who worked on autonomous tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is to study the scalability of small break LOCA experiments. The study is performed on the experimental data, as well as on the results of thermal hydraulic computation performed on TRACE code. The SBLOCA experiments were performed on PACTEL facility situated at LUT. The temporal scaling of the results was done by relating the total coolant mass in the system with the initial break mass flow and using the quotient to scale the experiment time. The results showed many similarities in the behaviour of pressure and break mass flow between the experiments.