916 resultados para Fire Resistance Level (FRL)
Resumo:
Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.
Resumo:
The problem of collisions between road users and trains at rail level crossings (RLXs) remains resistant to current countermeasures. One factor underpinning these collisions is poor Situation Awareness (SA) on behalf of the road user involved (i.e. not being aware of an approaching train). Although this is a potential threat at any RLX, the factors influencing SA may differ depending on whether the RLX is located in a rural or urban road environment. Despite this, there has been no empirical investigation regarding how road user SA might differ across distinct RLX environments. This knowledge is needed to establish the extent to which a uniform approach to RLX design and safety is acceptable. The aim of this paper is to investigate the differences in driver SA at rural versus urban RLXs. We present analyses of driver SA in both rural and urban RLX environments based on two recent on-road studies undertaken in Victoria, Melbourne. The findings demonstrate that driver SA is markedly different at rural and urban RLXs, and also that poor SA regarding approaching trains may be caused by different factors. The implications for RLX design and safety are discussed.
Resumo:
This thesis investigated biopsychological factors involved in successfully resisting overconsumption in an environment promoting obesity, and differences between individuals who were and were not able to resist overconsumption. Results showed that self control was a key factor in successful resistance, whereas sensitivity to food reward was associated with overconsumption susceptibility. Reduced self control may be a consequence as well as a cause of obesity, and may not recover following weight loss. Self control was not enhanced through an exercise programme that aimed to ameliorate brain fitness through improved cardiovascular fitness.
Resumo:
The study examined the health-related behaviours of Saudi people following a recent cardiac event and identified the factors that influence these behaviours using McLeroy et al.'s (1988) Ecological Model of Health Behaviours as a guiding framework. The study was one of the first in Saudi Arabia to examine the health-related behaviours of Saudi people following a recent cardiac event. The study findings emphasise the importance of a program that integrates secondary prevention practices, educational approaches and targeted supportive services in cardiac care in Saudi Arabia.
Resumo:
1. The vasodilator effects of adenosine receptor agonists, isoprenaline and histamine were examined in perfused heart preparations from young (4–6 weeks) and mature (12–20 weeks) rats. 2. Adenosine induced a biphasic concentration-dependent decrease in KCl (35 mM) raised coronary perfusion pressure in hearts from young and mature rats, suggesting the presence of both high- and low-affinity sites for adenosine receptors in the two age groups tested. In heart preparations from mature rats, vasodilator responses to adenosine were significantly reduced compared with responses observed in young rats. 3. Responses to 5′-N-ethylcarboxamidoadenosine (NECA) and 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) were reduced in preparations from mature rats, whereas the vasodilator actions of N6-cyclopentyladenosine (CPA) and N6-2-(4-aminophenyl)ethyladenosine (APNEA) did not change with age. 4. The results presented in this study suggest that several adenosine receptor subtypes mediate vasodilator responses in the coronary circulation of the rat and that a reduction in response to adenosine with age may be due to changes in the high-affinity receptor site.
Resumo:
We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree-grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation. © 2007 Springer Science+Business Media B.V.
Resumo:
There is a concern that high densities of elephants in southern Africa could lead to the overall reduction of other forms of biodiversity. We present a grid-based model of elephant-savanna dynamics, which differs from previous elephant-vegetation models by accounting for woody plant demographics, tree-grass interactions, stochastic environmental variables (fire and rainfall), and spatial contagion of fire and tree recruitment. The model projects changes in height structure and spatial pattern of trees over periods of centuries. The vegetation component of the model produces long-term tree-grass coexistence, and the emergent fire frequencies match those reported for southern African savannas. Including elephants in the savanna model had the expected effect of reducing woody plant cover, mainly via increased adult tree mortality, although at an elephant density of 1.0 elephant/km2, woody plants still persisted for over a century. We tested three different scenarios in addition to our default assumptions. (1) Reducing mortality of adult trees after elephant use, mimicking a more browsing-tolerant tree species, mitigated the detrimental effect of elephants on the woody population. (2) Coupling germination success (increased seedling recruitment) to elephant browsing further increased tree persistence, and (3) a faster growing woody component allowed some woody plant persistence for at least a century at a density of 3 elephants/km2. Quantitative models of the kind presented here provide a valuable tool for exploring the consequences of management decisions involving the manipulation of elephant population densities. © 2005 by the Ecological Society of America.
Resumo:
Dried plant food products are increasing in demand in the consumer market, leading to continuing research to develop better products and processing techniques. Plant materials are porous structures, which undergo large deformations during drying. For any given food material, porosity and other cellular parameters have a direct influence on the level of shrinkage and deformation characteristics during drying, which involve complex mechanisms. In order to better understand such mechanisms and their interrelationships, numerical modelling can be used as a tool. In contrast to conventional grid-based modelling techniques, it is considered that meshfree methods may have a higher potential for modelling large deformations of multiphase problem domains. This work uses a meshfree based microscale plant tissue drying model, which was recently developed by the authors. Here, the effects of porosity have been newly accounted for in the model with the objective of studying porosity development during drying and its influence on shrinkage at the cellular level. For simplicity, only open pores are modelled and in order to investigate the influence of different cellular parameters, both apple and grape tissues were used in the study. The simulation results indicated that the porosity negatively influences shrinkage during drying and the porosity decreases as the moisture content reduces (when open pores are considered). Also, there is a clear difference in the deformations of cells, tissues and pores, which is mainly influenced by the cell wall contraction effects during drying.
Resumo:
New product innovation has been identified as the key to firms' marketplace success, profit and survival. Yet, the failure rate for new products is high. Because of the high costs associated with new product development, there is considerable theoretical and managerial interest in how to minimize the high failure rates of new products and what separates new product winners from losers. This study focuses on individual level ambidexterity – namely head of the R&D departments' capacity to engage in creativity and attention-to-detail simultaneously, a skill involving different centers of attention, and relying on somewhat incompatible behaviors and processes. The ability to engage in these behaviors simultaneously is seen as being ambidextrous. Drawing from the data of 150 advanced manufacturing firms in India (gathered from one CEO and one head of the R&D department for each firm), the results show that when an individual head of R&D engages heavily only in creativity, too many new, risky ideas may come and when he/she engages heavily only in attention-to-detail, he/she may suffer through a lack of novel ideas. Both approaches limit individual's contribution to enhancing product innovation – financial performance relationship. The results also show that an individual head of R&D needs to engage in high levels creativity and attention-to-detail in the pursuit of enhancing product innovation to achieve superior financial performance.
Resumo:
Questions about the practicum within teacher education tend to focus on the amount of time allocated to it in programs. In this research, we were interested in the quality of the experience rather than assuming ‘more is better’. To understand what is going on and where, this study focussed on the school and specially the departmental office of room as a site for workplace learning. Using qualitative methods we constructed narratives from the data provided by a cohort of four-year bachelor degree pre-service teachers during and following their final major (10 week)practicum experience. Using theories of spatiality to make sense of the data, we found that the narratives revealed stories of spaces where compliance, disappointment were the key features of the practicum, and where resistance through absence (from the departmental office) was an important strategy to manage the experience. This research challenges the ‘more is better’ argument.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.
Resumo:
This research provides valuable insight into exercise barriers and prescription for individuals with cancer-related lymphoedema, particularly following breast cancer. Findings from this work demonstrate that by identifying and addressing exercise barriers, exercise confidence improves and, as such, enables longer-term exercise participation. Further, the findings demonstrating similar lymphoedema-related and physical and psychosocial benefits are achieved through participation in either resistance- or aerobic-based exercise highlights that exercise programs can be individualised, taking into consideration participants' interests, without jeopardising a woman's recovery and longer-term function, health, quality of life and survival.
Resumo:
Joint moments and joint powers are widely used to determine the effects of rehabilitation programs and prosthetic components (e.g., alignments). A complementary analysis of the 3D angle between joint moment and joint angular velocity has been proposed to assess whether the joints are predominantly driven or stabilized.
Resumo:
Biomechanical analysis of sport performance provides an objective method of determining performance of a particular sporting technique. In particular, it aims to add to the understanding of the mechanisms influencing performance, characterization of athletes, and provide insights into injury predisposition. Whilst the performance in sport of able-bodied athletes is well recognised in the literature, less information and understanding is known on the complexity, constraints and demands placed on the body of an individual with a disability. This paper provides a dialogue that outlines scientific issues of performance analysis of multi-level athletes with a disability, including Paralympians. Four integrated themes are explored the first of which focuses on how biomechanics can contribute to the understanding of sport performance in athletes with a disability and how it may be used as an evidence-based tool. This latter point questions the potential for a possible cultural shift led by emergence of user-friendly instruments. The second theme briefly discusses the role of reliability of sport performance and addresses the debate of two-dimensional and three-dimensional analysis. The third theme address key biomechanical parameters and provides guidance to clinicians, and coaches on the approaches adopted using biomechanical/sport performance analysis for an athlete with a disability starting out, to the emerging and elite Paralympian. For completeness of this discourse, the final theme is based on the controversial issues on the role of assisted devices and the inclusion of Paralympians into able-bodied sport is also presented. All combined, this dialogue highlights the intricate relationship between biomechanics and training of individuals with a disability. Furthermore, it illustrates the complexity of modern training of athletes which can only lead to a better appreciation of the performances to be delivered in the London 2012 Paralympic Games
Resumo:
OBJECTIVES: To locate the acquired bla(OXA-23) carbapenem resistance gene in an Australian A. baumannii global clone 1 (GC1) isolate. METHODS: The genome of the extensively antibiotic-resistant GC1 isolate A85 harbouring bla(OXA-23) in Tn2006 was sequenced using Illumina HiSeq, and the reads were used to generate a de novo assembly. PCR was used to assemble relevant contigs. Sequences were compared with ones in GenBank. Conjugation experiments were conducted. RESULTS: The sporadic GC1 isolate A85, recovered in 2003, was extensively resistant, exhibiting resistance to imipenem, meropenem and ticarcillin/clavulanate, to cephalosporins and fluoroquinolones and to the older antibiotics gentamicin, kanamycin and neomycin, sulfamethoxazole, trimethoprim and tetracycline. Genes for resistance to older antibiotics are in the chromosome, in an AbaR3 resistance island. A second copy of the ampC gene in Tn6168 confers cephalosporin resistance and the gyrA and parC genes have mutations leading to fluoroquinolone resistance. An 86 335 bp repAci6 plasmid, pA85-3, carrying bla(OXA-23) in Tn2006 in AbaR4, was shown to transfer imipenem, meropenem and ticarcillin/clavulanate resistance into a susceptible recipient. A85 also contains two small cryptic plasmids of 2.7 and 8.7 kb. A85 is sequence type ST126 (Oxford scheme) and carries a novel KL15 capsule locus and the OCL3 outer core locus. CONCLUSIONS: A85 represents a new GC1 lineage identified by the novel capsule locus but retains AbaR3 carrying genes for resistance to older antibiotics. Resistance to imipenem, meropenem and ticarcillin/clavulanate has been introduced into A85 by pA85-3, a repAci6 conjugative plasmid carrying Tn2006 in AbaR4.