874 resultados para Filmic approach methods
Resumo:
The concept of the relative density seems like a fruitful nonparametric approach to studying distributional differences between groups (Handcock and Morris 1999), yet it appears that the technique has gone more or less unnoticed in applied social science research. A scarcity of canned software might be one of the reasons the method is underutilized. Therefore, I present a new Stata command called reldist to plot the relative density, decompose distributional differences into location and shape effects, and compute relative distribution summary measures. The command is illustrated by an application comparing earnings by sex.
Resumo:
Firms that are expanding their cross-border activities, such as vertical specialization trade, outsourcing, and fragmentation productions, have brought dramatic changes to the global economy during the last two decades. In an attempt to understand the evolution of the interaction among countries or country groups, many trade-statistics-based indicators have been developed. However, most of these statistics focus on showing the direct trade-specific-relationship among countries, rather than considering the roles that intercountry and interindustrial production networks play in a global economy. This paper uses the concepts of trade in value added as measured by the input–output tables of OECD and IDE-JETRO to provide alternative indicators that show the evolution of regional economic integration and global value chains for more than 50 economies. In addition, this paper provides thoughts on how to evaluate comparative advantages on the basis of value added using an international input–output model.
Resumo:
The objective of this thesis is the development of cooperative localization and tracking algorithms using nonparametric message passing techniques. In contrast to the most well-known techniques, the goal is to estimate the posterior probability density function (PDF) of the position of each sensor. This problem can be solved using Bayesian approach, but it is intractable in general case. Nevertheless, the particle-based approximation (via nonparametric representation), and an appropriate factorization of the joint PDFs (using message passing methods), make Bayesian approach acceptable for inference in sensor networks. The well-known method for this problem, nonparametric belief propagation (NBP), can lead to inaccurate beliefs and possible non-convergence in loopy networks. Therefore, we propose four novel algorithms which alleviate these problems: nonparametric generalized belief propagation (NGBP) based on junction tree (NGBP-JT), NGBP based on pseudo-junction tree (NGBP-PJT), NBP based on spanning trees (NBP-ST), and uniformly-reweighted NBP (URW-NBP). We also extend NBP for cooperative localization in mobile networks. In contrast to the previous methods, we use an optional smoothing, provide a novel communication protocol, and increase the efficiency of the sampling techniques. Moreover, we propose novel algorithms for distributed tracking, in which the goal is to track the passive object which cannot locate itself. In particular, we develop distributed particle filtering (DPF) based on three asynchronous belief consensus (BC) algorithms: standard belief consensus (SBC), broadcast gossip (BG), and belief propagation (BP). Finally, the last part of this thesis includes the experimental analysis of some of the proposed algorithms, in which we found that the results based on real measurements are very similar with the results based on theoretical models.
Resumo:
A simple illustrative physical model is presented to describe the kinetics of damage and amorphization by swiftheavyions (SHI) in LiNbO3. The model considers that every ion impact generates initially a defective region (halo) and a full amorphous core whose relative size depends on the electronic stopping power. Below a given stopping power threshold only a halo is generated. For increasing fluences the amorphized area grows monotonically via overlapping of a fixed number N of halos. In spite of its simplicity the model, which provides analytical solutions, describes many relevant features of the kinetic behaviour. In particular, it predicts approximate Avrami curves with parameters depending on stopping power in qualitative accordance with experiment that turn into Poisson laws well above the threshold value
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
Fish communities are a key element in fluvial ecosystems Their position in the top of the food chain and their sensitivity to a whole range of impacts make them a clear objective for ecosystem conservation and a sound indicator of biological integrity. The UE Water Framework Directive includes fish community composition, abundance and structure as relevant elements for the evaluation os biological condition. Several approaches have been proposed for the evaluation of the condition of fish communities, from the bio-indicator concept to the IBI (Index of biotic integrity) proposals. However, the complexity of fish communities and their ecological responses make this evaluation difficult, and we must avoid both oversimplified and extreme analytical procedures. In this work we present a new proposal to define reference conditions in fish communities, discussing them from an ecological viewpoint. This method is a synthetic approach called SYNTHETIC OPEN METHODOLOGICAL FRAMEWORK (SOMF) that has been applied to the rivers of Navarra. As a result, it is recommended the integration of all the available information from spatial, modelling, historical and expert sources, providing the better approach to fish reference conditions, keeping the highest level of information and meeting the legal requirements of the WFD.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
To calculate the force associated with the Yarkovsky effect the temperature distribution on the surface of the asteroid should be determined; it depends on the asteroid orbit, size and shape, spin axis orientation and period, mass, density of surface layers, albedo, thermal conductivity, capacity and IR emissivity of the material. The uncertainty of many of these parameters invites to develop simplified methods to calculate the influence of the Yarkovsky effect on long term dynamics of asteroids. In this paper we present one of this method based in a special perturbation procedure developed in our group.
Resumo:
The development of a global instability analysis code coupling a time-stepping approach, as applied to the solution of BiGlobal and TriGlobal instability analysis 1, 2 and finite-volume-based spatial discretization, as used in standard aerodynamics codes is presented. The key advantage of the time-stepping method over matrix-formulation approaches is that the former provides a solution to the computer-storage issues associated with the latter methodology. To-date both approaches are successfully in use to analyze instability in complex geometries, although their relative advantages have never been quantified. The ultimate goal of the present work is to address this issue in the context of spatial discretization schemes typically used in industry. The time-stepping approach of Chiba 3 has been implemented in conjunction with two direct numerical simulation algorithms, one based on the typically-used in this context high-order method and another based on low-order methods representative of those in common use in industry. The two codes have been validated with solutions of the BiGlobal EVP and it has been showed that small errors in the base flow do not have affect significantly the results. As a result, a three-dimensional compressible unsteady second-order code for global linear stability has been successfully developed based on finite-volume spatial discretization and time-stepping method with the ability to study complex geometries by means of unstructured and hybrid meshes
Resumo:
We establish an axiomatic model of multi-measures, capturing some classes of measures studied in the fuzzy sets literature, where they are applied to only one or two arguments.
Resumo:
This paper discusses a novel hybrid approach for text categorization that combines a machine learning algorithm, which provides a base model trained with a labeled corpus, with a rule-based expert system, which is used to improve the results provided by the previous classifier, by filtering false positives and dealing with false negatives. The main advantage is that the system can be easily fine-tuned by adding specific rules for those noisy or conflicting categories that have not been successfully trained. We also describe an implementation based on k-Nearest Neighbor and a simple rule language to express lists of positive, negative and relevant (multiword) terms appearing in the input text. The system is evaluated in several scenarios, including the popular Reuters-21578 news corpus for comparison to other approaches, and categorization using IPTC metadata, EUROVOC thesaurus and others. Results show that this approach achieves a precision that is comparable to top ranked methods, with the added value that it does not require a demanding human expert workload to train
Resumo:
The Microarray technique is rather powerful, as it allows to test up thousands of genes at a time, but this produces an overwhelming set of data files containing huge amounts of data, which is quite difficult to pre-process, separate, classify and correlate for interesting conclusions to be extracted. Modern machine learning, data mining and clustering techniques based on information theory, are needed to read and interpret the information contents buried in those large data sets. Independent Component Analysis method can be used to correct the data affected by corruption processes or to filter the uncorrectable one and then clustering methods can group similar genes or classify samples. In this paper a hybrid approach is used to obtain a two way unsupervised clustering for a corrected microarray data.
Resumo:
This paper presents and illustrates with an example a practical approach to the dataflow analysis of programs written in constraint logic programming (CLP) languages using abstract interpretation. It is first argued that, from the framework point of view, it sufnces to propose relatively simple extensions of traditional analysis methods which have already been proved useful and practical and for which efncient fixpoint algorithms have been developed. This is shown by proposing a simple but quite general extensión of Bruynooghe's traditional framework to the analysis of CLP programs. In this extensión constraints are viewed not as "suspended goals" but rather as new information in the store, following the traditional view of CLP. Using this approach, and as an example of its use, a complete, constraint system independent, abstract analysis is presented for approximating definiteness information. The analysis is in fact of quite general applicability. It has been implemented and used in the analysis of CLP(R) and Prolog-III applications. Results from the implementation of this analysis are also presented.
Resumo:
Abstract The creation of atlases, or digital models where information from different subjects can be combined, is a field of increasing interest in biomedical imaging. When a single image does not contain enough information to appropriately describe the organism under study, it is then necessary to acquire images of several individuals, each of them containing complementary data with respect to the rest of the components in the cohort. This approach allows creating digital prototypes, ranging from anatomical atlases of human patients and organs, obtained for instance from Magnetic Resonance Imaging, to gene expression cartographies of embryo development, typically achieved from Light Microscopy. Within such context, in this PhD Thesis we propose, develop and validate new dedicated image processing methodologies that, based on image registration techniques, bring information from multiple individuals into alignment within a single digital atlas model. We also elaborate a dedicated software visualization platform to explore the resulting wealth of multi-dimensional data and novel analysis algo-rithms to automatically mine the generated resource in search of bio¬logical insights. In particular, this work focuses on gene expression data from developing zebrafish embryos imaged at the cellular resolution level with Two-Photon Laser Scanning Microscopy. Disposing of quantitative measurements relating multiple gene expressions to cell position and their evolution in time is a fundamental prerequisite to understand embryogenesis multi-scale processes. However, the number of gene expressions that can be simultaneously stained in one acquisition is limited due to optical and labeling constraints. These limitations motivate the implementation of atlasing strategies that can recreate a virtual gene expression multiplex. The developed computational tools have been tested in two different scenarios. The first one is the early zebrafish embryogenesis where the resulting atlas constitutes a link between the phenotype and the genotype at the cellular level. The second one is the late zebrafish brain where the resulting atlas allows studies relating gene expression to brain regionalization and neurogenesis. The proposed computational frameworks have been adapted to the requirements of both scenarios, such as the integration of partial views of the embryo into a whole embryo model with cellular resolution or the registration of anatom¬ical traits with deformable transformation models non-dependent on any specific labeling. The software implementation of the atlas generation tool (Match-IT) and the visualization platform (Atlas-IT) together with the gene expression atlas resources developed in this Thesis are to be made freely available to the scientific community. Lastly, a novel proof-of-concept experiment integrates for the first time 3D gene expression atlas resources with cell lineages extracted from live embryos, opening up the door to correlate genetic and cellular spatio-temporal dynamics. La creación de atlas, o modelos digitales, donde la información de distintos sujetos puede ser combinada, es un campo de creciente interés en imagen biomédica. Cuando una sola imagen no contiene suficientes datos como para describir apropiadamente el organismo objeto de estudio, se hace necesario adquirir imágenes de varios individuos, cada una de las cuales contiene información complementaria respecto al resto de componentes del grupo. De este modo, es posible crear prototipos digitales, que pueden ir desde atlas anatómicos de órganos y pacientes humanos, adquiridos por ejemplo mediante Resonancia Magnética, hasta cartografías de la expresión genética del desarrollo de embrionario, típicamente adquiridas mediante Microscopía Optica. Dentro de este contexto, en esta Tesis Doctoral se introducen, desarrollan y validan nuevos métodos de procesado de imagen que, basándose en técnicas de registro de imagen, son capaces de alinear imágenes y datos provenientes de múltiples individuos en un solo atlas digital. Además, se ha elaborado una plataforma de visualization específicamente diseñada para explorar la gran cantidad de datos, caracterizados por su multi-dimensionalidad, que resulta de estos métodos. Asimismo, se han propuesto novedosos algoritmos de análisis y minería de datos que permiten inspeccionar automáticamente los atlas generados en busca de conclusiones biológicas significativas. En particular, este trabajo se centra en datos de expresión genética del desarrollo embrionario del pez cebra, adquiridos mediante Microscopía dos fotones con resolución celular. Disponer de medidas cuantitativas que relacionen estas expresiones genéticas con las posiciones celulares y su evolución en el tiempo es un prerrequisito fundamental para comprender los procesos multi-escala característicos de la morfogénesis. Sin embargo, el número de expresiones genéticos que pueden ser simultáneamente etiquetados en una sola adquisición es reducido debido a limitaciones tanto ópticas como del etiquetado. Estas limitaciones requieren la implementación de estrategias de creación de atlas que puedan recrear un multiplexado virtual de expresiones genéticas. Las herramientas computacionales desarrolladas han sido validadas en dos escenarios distintos. El primer escenario es el desarrollo embrionario temprano del pez cebra, donde el atlas resultante permite constituir un vínculo, a nivel celular, entre el fenotipo y el genotipo de este organismo modelo. El segundo escenario corresponde a estadios tardíos del desarrollo del cerebro del pez cebra, donde el atlas resultante permite relacionar expresiones genéticas con la regionalización del cerebro y la formación de neuronas. La plataforma computacional desarrollada ha sido adaptada a los requisitos y retos planteados en ambos escenarios, como la integración, a resolución celular, de vistas parciales dentro de un modelo consistente en un embrión completo, o el alineamiento entre estructuras de referencia anatómica equivalentes, logrado mediante el uso de modelos de transformación deformables que no requieren ningún marcador específico. Está previsto poner a disposición de la comunidad científica tanto la herramienta de generación de atlas (Match-IT), como su plataforma de visualización (Atlas-IT), así como las bases de datos de expresión genética creadas a partir de estas herramientas. Por último, dentro de la presente Tesis Doctoral, se ha incluido una prueba conceptual innovadora que permite integrar los mencionados atlas de expresión genética tridimensionales dentro del linaje celular extraído de una adquisición in vivo de un embrión. Esta prueba conceptual abre la puerta a la posibilidad de correlar, por primera vez, las dinámicas espacio-temporales de genes y células.
Resumo:
The need for the simulation of spectrum compatible earthquake time histories has existed since earthquake engineering for complicated structures began. More than the safety of the main structure, the analysis of the equipment (piping, racks, etc.) can only be assessed on the basis of the time history of the floor in which they are contained. This paper presents several methods for calculating simulated spectrum compatible earthquakes as well as a comparison between them. As a result of this comparison, the use of the phase content in real earthquakes as proposed by Ohsaki appears as an effective alternative to the classical methods. With this method, it is possible to establish an approach without the arbitrary modulation commonly used in other methods. Different procedures are described as is the influence of the different parameters which appear in the analysis. Several numerical examples are also presented, and the effectiveness of Ohsaki's method is confirmed.