972 resultados para Film - documentary
Resumo:
An investigation on the correlation between amorphous Si (a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H
Resumo:
Investigations on photoluminescence properties of (11 (2) over bar0) GaN grown on (1 (1) over bar 02) Al2O3 substrate by metalorganic chemical-vapor deposition are reported. Several emission lines not reported before are observed at low temperature. The sharp peak at 3.359 eV is attributed to the exciton bound to the neutral acceptor. Another peak at 3.310 eV represents a free-to-bound, probably a free electron-to-acceptor, transition. The 3.241 and 3.170 eV lines are interpreted as phonon replica lines of the 3.310 eV line. The phonon energy is 70 meV, consistent with the energy of transverse optical E-1 phonon. The optical properties of the lines are analyzed. (C) 2003 American Institute of Physics.
Resumo:
The optical band gap (E-g) of the boron (B)-doped hydrogenated nano-crystalline silicon (nc-Si:H) films fabricated using plasma enhanced chemical vapor deposition (PECVD) was investigated in this work. The transmittance of the films were measured by spectrophotometric and the E-g was evaluated utilizing three different relations for comparison, namely: alphahnu=C(hnu-E-g)(3), alphahnu=B-0(hnu-E-g)(2), alphahnu=C-0(hnu-E-g)(2). Result showed that E-g decreases with the increasing of Boron doping ratio, hydrogen concentration, and substrate's temperature (T-s), respectively. E-g raises up with rf power density (P-d) from 0.45W.cm(-2) to 0.60w.cm(-2) and then drops to the end. These can be explained for E-g decreases with disorder in the films.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
In order to overcome the large lattice mismatch in the heteroepitaxy, a new patterned compliant substrate method has been introduced, which has overcome the disadvantages of previously published methods. InP film of thickness 800 nm was directly grown on this substrate. Scanning electron microscopy (SEM) has shown that good surface morphology has been obtained. In addition, Photoluminescence (PL) and double crystal X-ray diffraction (DCXRD) study have shown that the residual strain has been reduced, and that the structure quality has been improved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.
Resumo:
Nanocomposite films consisting of nanosized Ag particles embedded in partially oxidized amorphous Si-containing matrices were prepared by radio frequency magnetron co-sputtering deposition. We studied the influence of ambient atmosphere during the preparation and heat-treatment of Ag/SiOx (0 less than or equal to x less than or equal to 2) nanocompositefilm on its optical absorption properties. We found that the plasmon resonance absorption peak shifts to shorter wavelengths with the increasing oxygen content in the SiOx matrix. The analysis indicates that the potential barrier between Ag nanoparticles and SiOx matrix increases with the increasing x value, which will induce the surface resonance state to shift to higher energy. The electrons in the vicinity of the Fermi level of Ag nanoparticles must absorb more energy to be transferred to the surface resonance state with the increasing x value. It was also found that the plasmon resonance absorption peaks of the samples annealed in different ambient atmospheres are located at about the same position. This is because the oxidation surface layer is dense enough to prevent the oxygen from penetrating into the sample to oxidize the silicon in the inner layer.
Resumo:
The temperature dependence of photoluminescence (PL) from a-C:H film deposited by CH3+ ion beam has been performed and an anomalous behavior has been reported. A transition temperature at which the PL intensity, peak position and full width at the half maximum change sharply was observed. It is proposed that different structure units. at least three, are responsible for such behavior. Above the transition point. increasing temperature will lead to the dominance of non-radiative recombination process, which quenches the PL overall and preferentially the red part, Possible emission mechanisms have been discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The microstructure and its annealing behaviours of a-Si:O:H film prepared by PECVD are investigated in detail using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and Infrared absorption spectroscopy. The results indicate that the as-deposited a-Si:O:H film is structural inhomogeneous, with Si-riched phases surrounded by O-riched phases. The Si-riched phases are found to be nonhydrogenated amorphous silicon (a-Si) clusters, and the O-riched phases SiOx:H (x approximate to 1. 35) are formed by random bonding of Si, O and H atoms. By high-temperature annealing at 1150 degreesC, the SiOx:H (x approximate to 1.35) matrix is shown to be transformed into SiO2 and SiOx ( x approximate to 0.64), during which all of the hydrogen atoms in the film escape and some of silicon atoms are separated from the SiOx:H ( x approximate to 1.35) matrix; The separated silicon atoms are found to be participated in the nucleation and growth processes of solid-phase crystallization of the a-Si clusters, nano-crystalline silicon (ne-Si) is then formed. The microstructure of the annealed film is thereby described with a multi-shell model, in which the ne-Si clusters are embedded in SiOx (x = 0.64) and SiO2. The former is located at the boundaries of the nc-Si clusters, with a thickness comparable with the scale of nc-Si clusters, and forms the transition oxide layer between the ne-Si and the SiO2 matrix.
Resumo:
A CeO2 film with a thickness of about 80nm was deposited by a mass-analysed low-energy dual ion beam deposition technique on an Si(111) substrate. Reflection high-energy electron diffraction and x-ray diffraction measurements showed that the film is a single crystal. The tetravalent state of Ce in the film was confirmed by x-ray photoelectron spectroscopy measurements, indicating that stoichiometric CeO2 was formed. Violet/blue light emission (379.5 nm) was observed at room temperature, which may be tentatively explained by charge transitions from the 4f band to the valence band of CeO2.
Resumo:
It is believed that during the initial stage of diamond film growth by chemical-vapor deposition (CVD), ion bombardment is the main mechanism in the bias-enhanced-nucleation (BEN) process. To verify such a statement, experiments by using mass-separated ion-beam deposition were carried out, in which a pure carbon ion beam, with precisely defined low energy, was selected for investigating the ion-bombardment effect on a Si substrate. The results are similar to those of the BEN process, which supports the ion-bombardment-enhanced-nucleation mechanism. The formation of sp(3) bonding is based on the presumption that the time of stress generation is much shorter than the duration of the relaxation process. The ion-bombarded Si is expected to enhance the CVD diamond nucleation density because the film contains amorphous carbon embedded with nanocrystalline diamond and defective graphite. (C) 2001 American Institute of Physics.
Resumo:
By mass-selected low energy ion beam deposition, amorphous carbon film was obtained. X-ray diffraction, Raman and Auger electron spectroscopy depth line shape measurements showed that such carbon films contained diamond particles. The main growth mechanism is subsurface implantation. Furthermore, it was indicated in a different way that ion bombardment played a decisive role in bias enhanced nucleation of chemical vapor deposition diamond.
Resumo:
A novel electroluminescence oxide phosphor (Gd2O3-Ga2O3):Ce has been prepared by electron beam evaporation. The emission peaks of photoluminescence lie at 390nm and a shoulder at 440nm. However, the electroluminescence of the (Gd2O3-Ga2O3):Ce thin film have four emission peaks at 358nm, 390nm, 439nm and 510nm, respectively. The optical absorption of (Gd2O3-Ga2O3):Ce thin film and the photoluminescence of composite materials with various ratios of Ga2O3/(Gd2O3+Ga2O3) have also been described to investigate the origin of emission of photoluminescence and electroluminescence.
Resumo:
The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.